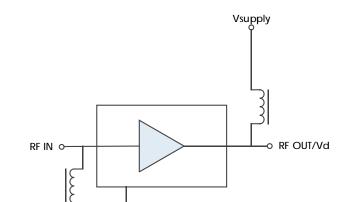
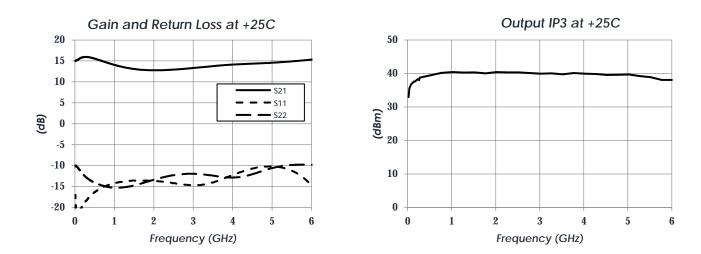
20 MHz to 6 GHz Gain Block

Description


The AM1122 is a cascadable gain block servicing the 20 MHz to 6 GHz frequency range. The device has exceptional second and third order linearity, which makes it ideally suited in highly linear applications. Packaged in a 3mm QFN, the AM1122 represents a compact total PCB footprint.

mercury


Functional Diagram

Features

- +40 dBm OIP3
- +26 dBm IIP3
- +52 dBm OIP2
- 15 dB Gain
- +26 dBm P1dB
- 4.5 dB Noise figure
- +8.0V Operation
- 1.8 W Power Consumption
- 3mm QFN Ceramic
- -40C to +85C Operation

Characteristic Performance

To obtain price, delivery, or to place an order contact <u>MMICSales@mrcy.com</u> Atlanta Micro Inc., now a part of Mercury Systems 3720 Davinci Ct, Suite 400, Peachtree Corners, GA 30092 • Phone: (470) 253-7640 • <u>www.atlantamicro.com</u>

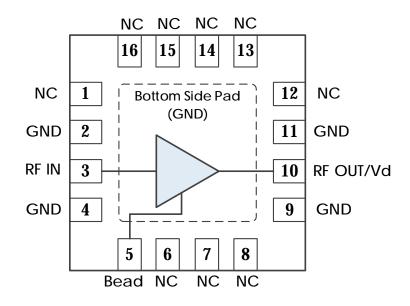
mercury

20 MHz to 6 GHz Gain Block

Table of Contents

Description	.1
Features	.1
Functional Diagram	.1
Characteristic Performance	.1
Revision History	.2
Pin Layout and Definitions	.3
Specifications	.4
Absolute Maximum Ratings	. 4
Handling Information	4

Recommended Operating Conditions 4
Thermal Information4
DC Electrical Characteristics5
RF Performance5
Typical Performance6
Typical Application8
Evaluation PC Board9
Related Parts9
Component Compliance Information 10


Revision History

Date	Revision Number	Notes
September 23, 2021	1	Initial Release

20 MHz to 6 GHz Gain Block

Pin Layout and Definitions

Pin Number	Pin Name	Pin Function
1	NC	No Connect
2	GND	Ground - Common
3	RF IN	RF Input – External DC Blocking Capacitor Required
4	GND	Ground - Common
5	Bead	Connect to RF In through external ferrite bead or large
		inductor
6-8	NC	No Connect
9	GND	Ground - Common
10	RF OUT	RF Output – External Bias Tee Required
11	GND	Ground - Common
12-16	NC	No Connect

*Note: NC pins may be grounded or left open

20 MHz to 6 GHz Gain Block

Specifications

Absolute Maximum Ratings

	Minimum	Maximum
Supply Voltage	-0.3 V	+8.3 V
RF Input Power		+20dBm
Storage Temperature Range	-55 C	+150 C

Note: Any device operation beyond the Absolute Maximum Ratings may result in permanent damage to the device. The values listed in this table are extremes and do not imply functional operation of the device at these or any other conditions beyond what is listed under Recommended Operating Conditions. Any part subjected to conditions outside of what is recommended for an extended amount of time may suffer from reliability concerns.

Handling Information

	Minimum	Maximum
Moisture Sensitivity Level	MSL 1	

Atlanta Micro products are electrostatic sensitive. Follow safe handling practices to avoid damage

Recommended Operating Conditions

	Minimum	Typical	Maximum
Supply Voltage	+7.7V	+8.0 V	+8.3V
Operating Case Temperature	-40 C		+85 C

Thermal Information

Junction to Case Thermal Resistance (θ _{JC})	31.6 C/W
Nominal Junction Temperature at +85C Ambient	+141 C
Channel Temperature to Maintain 1 Million Hour MTTF	+175 C

20 MHz to 6 GHz Gain Block

DC Electrical Characteristics

(VDD = 8V, ID = 222mA, T = 25 °C unless otherwise specified)

Parameter	Testing Conditions	Minimum	Typical	Maximum
DC Supply Voltage		+7.7V	+8.0 V	+8.3V
DC Supply Current	VDD = +8.0 V		222mA	
Power Dissipated	VDD = +8.0 V		1.77 W	

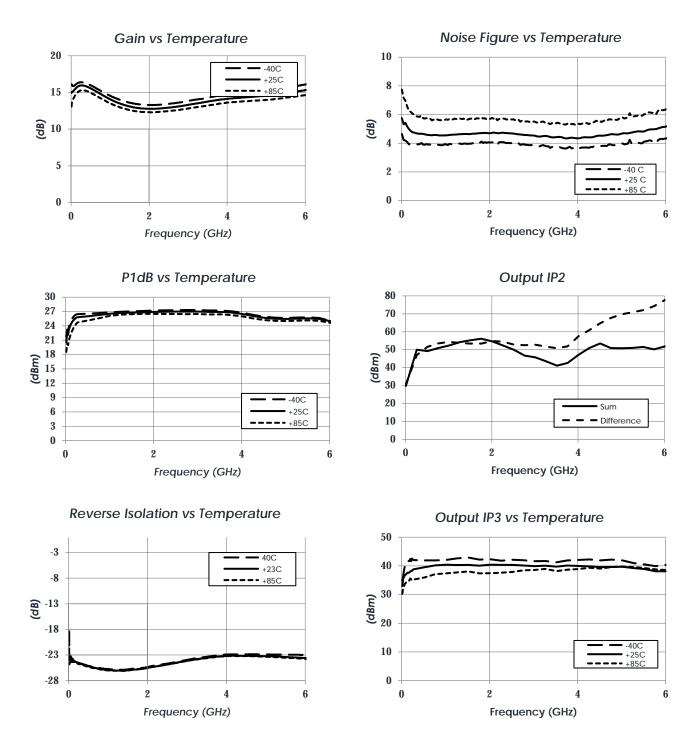
RF Performance

(VDD = 8V, ID = 222mA, T = 25 °C unless otherwise specified)

Parameter	Testing Conditions	Minimum	Typical	Maximum
Frequency Range		20MHz		6GHz
Gain			+15 dB	
Return Loss			10 dB	
Output IP3			+40 dBm	
Output IP2			+52 dBm	
Output P1dB			+26 dBm	
Noise Figure			+4.5 dB	

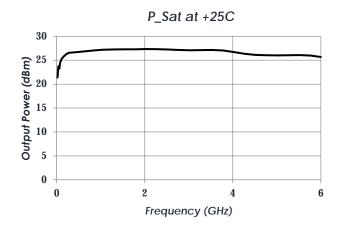
Notes:

- 1. IP3 measured with 10MHz tone spacing
- 2. IP2 characterized with sum and difference measurements
 - -IP2 sum measured with 10MHz tone spacing. IM2 measured at $1 + \frac{1}{2}$

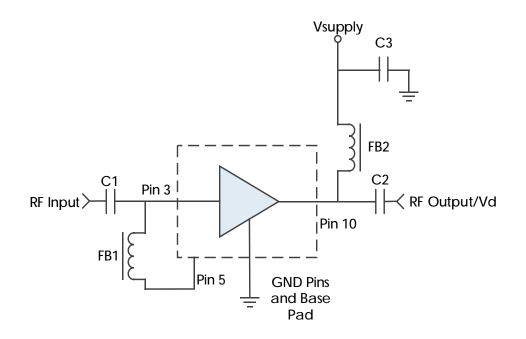

-IP2 difference measured with tones at $_1$ and $_2$ = (2 \times 1) $-\,10$ $\,$. IM2 measured at $_2-_1$

20 MHz to 6 GHz Gain Block

Typical Performance


(VDD = 8V, ID = 222mA, T = 25 °C unless otherwise specified)

20 MHz to 6 GHz Gain Block

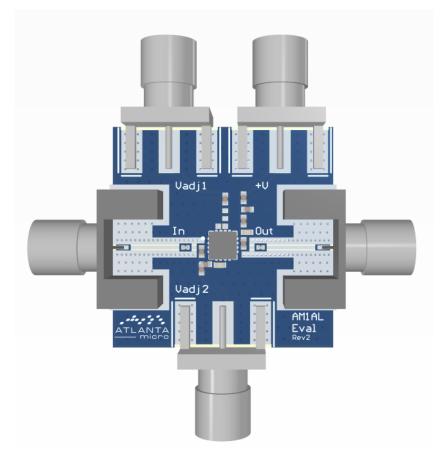

Typical Performance (continued)

20 MHz to 6 GHz Gain Block

Typical Application

Recommended Component List (or equivalent):

Part	Value	Part Number	Manufacturer
C1, C2	0.1 uF	0201BB104KW160	Passives Plus
C3	0.1 uF	GRM155R71C104KA88	Murata
FB1	-	MMZ1005A222E	TDK
FB2	-	BLM15HG102SN1	Murata


Notes:

- 1. NC pins may be grounded or left open
- 2. DC blocking capacitors should be high performance, low-loss, broadband capacitors for optimum performance
- 3. Low frequency performance may be improved by replacing FB2 with a larger value bead, inductor, or bias tee.

20 MHz to 6 GHz Gain Block

Evaluation PC Board

Related Parts

Part Number				Description
AM1025	0.02GHz	to	3GHz	Gain Block
AM1082	5GHz	to	17GHz	Driver Amplifier
AM1090	DC	to	6GHz	Gain Block
AM1123	0.02GHz	to	8GHz	Gain Block
AM1127	0.02GHz	to	6GHz	Gain Block

20 MHz to 6 GHz Gain Block

Component Compliance Information

RoHS: Atlanta Micro, Inc. hereby certifies that all products comply with the EC Directive 2011/65/EC on the Restriction of Hazardous Substances, commonly known as EU-RoHS 6 and 10. All products supplied by Atlanta Micro shall be compliant with the European Directive 2011/65/EC based on the following substance list.

Substance List	Allowable Maximum Concentration
Lead (Pb)	<1000 PPM (0.1% by weight)
Mercury (Hg)	<1000 PPM (0.1% by weight)
Cadmium (Cd)	<75 PPM (0.0075% by weight)
Hexavalent Chromium (CrVI)	<1000 PPM (0.1% by weight)
Polybrominated Biphenyls (PBB)	<1000 PPM (0.1% by weight)
Polybrominated Diphenyl ethers (PBDE)	<1000 PPM (0.1% by weight)
Decabromodiphenyl Deca BDE	<1000 PPM (0.1% by weight)
Bis (2-ethylheyl) Phthalate (DEHP)	<1000 PPM (0.1% by weight)
Butyl Benzyl Phthalate (BBP)	<1000 PPM (0.1% by weight)
Dibutyl Phthalate (DBP)	<1000 PPM (0.1% by weight)
Diisobutyl Phthalate (DIBP)	<1000 PPM (0.1% by weight)

REACH: Atlanta Micro, Inc. neither uses nor intentionally adds any of the substances considered to be a Substance of Very High Concern (SVHC) as defined by the EU Regulation (EC) No. 1907-2006 on Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH).

Conflict Materials: Atlanta Micro does not knowingly use materials that are sourced from the Democratic Republic of Congo (DRC) or any other known conflict regions. Atlanta Micro's supply chain is comprised of sources that are both environmentally and socially responsible. We periodically review this requirement with our vendors to ensure continued compliance.

Atlanta Micro takes its responsibility as a global partner seriously and will use due diligence within our supply chain to ensure all standards are met to the best of our knowledge.