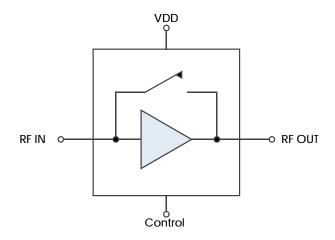
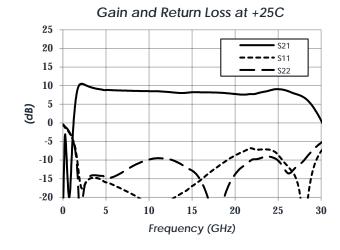
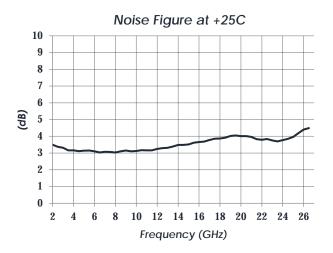



## **Description**


AM1101 is a wideband bypassable amplifier covering the 2 to 26.5 GHz frequency range. The device exhibits low noise figure and moderate gain across the entire frequency range while only drawing 100 mW of power. Packaged in a 3mm QFN with an integrated bypass path and internal 50  $\Omega$  matching, the AM1101 represents a dramatic size reduction when compared to discrete implementations of bypassable amplifiers.




#### **Features**


- 8 dB gain
- 3.5 dB Noise Figure
- +22 dBm OIP3
- +10 dBm P1dB
- 5 dB Insertion Loss Bypass Path
- +3.3V Supply
- 102 mW Power Consumption
- -40C to +85C Operation

## **Functional Diagram**



#### **Characteristic Performance**





AM1101 Rev 2

# AM1101 - Bypassable Amplifier

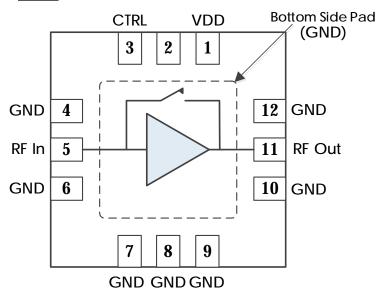


2 GHz to 26.5 GHz Bypassable Gain Block

## **Table of Contents**

| Description                      | . 1 |
|----------------------------------|-----|
| Features                         | . 1 |
| Functional Diagram               | . 1 |
| Characteristic Performance       |     |
| Revision History                 | . 2 |
| Pin Layout and Definitions       | . : |
| Specifications                   | . 4 |
| Absolute Maximum Ratings         | . 4 |
| Handling Information             | . 4 |
| Recommended Operating Conditions | . 4 |
|                                  |     |

| DC Electrical Characteristics       |
|-------------------------------------|
| RF Performance5                     |
| Timing Characteristics              |
| State Table5                        |
| Typical Performance                 |
| Typical Application                 |
| Evaluation PC Board                 |
| Related Parts9                      |
| Component Compliance Information 10 |


# **Revision History**

| Date              | Revision Number | Notes                                  |
|-------------------|-----------------|----------------------------------------|
| June 12, 2020     | 1               | Initial Release                        |
| March 9, 2021     | 2               | Added Logic Voltage Levels and Picture |
| November 19, 2021 | 3               | Added Bypass IIP3 and P1dB             |



# **Pin Layout and Definitions**

Note: All Un-Labeled Pins are NC or Ground



| Pin Number | Pin Name | Pin Function                                                              |
|------------|----------|---------------------------------------------------------------------------|
| 1          | VDD      | DC Power Input                                                            |
| 2          | NC       | No connect                                                                |
| 3          | CTRL     | Bypass/Amplifier Mode Control                                             |
| 4          | GND      | Ground - Common                                                           |
| 5          | RF In    | RF Input - 50 Ohms - DC Coupled. External DC blocking capacitor required  |
| 6-10       | GND      | Ground – Common                                                           |
| 11         | RF Out   | RF Output - 50 Ohms - DC Coupled. External DC blocking capacitor required |
| 12         | GND      | Ground - Common                                                           |

# AM1101 - Bypassable Amplifier



# 2 GHz to 26.5 GHz Bypassable Gain Block

# **Specifications**

#### **Absolute Maximum Ratings**

|                                | Minimum | Maximum |
|--------------------------------|---------|---------|
| Supply Voltage                 | -0.3 V  | +3.5 V  |
| RF Input Power                 |         | +20 dBm |
| Operating Junction Temperature | -40 C   | +150 C  |
| Storage Temperature Range      | -55 C   | +150 C  |

**Note:** Any device operation beyond the Absolute Maximum Ratings may result in permanent damage to the device. The values listed in this table are extremes and do not imply functional operation of the device at these or any other conditions beyond what is listed under Recommended Operating Conditions. Any part subjected to conditions outside of what is recommended for an extended amount of time may suffer from reliability concerns.

### **Handling Information**

|                                         | Minimum | Maximum |
|-----------------------------------------|---------|---------|
| Storage Temperature Range (Recommended) | -50 C   | +125 C  |
| Moisture Sensitivity Level              | MSL 3   |         |



Atlanta Micro products are electrostatic sensitive. Follow safe handling practices to avoid damage

## **Recommended Operating Conditions**

|                                | Minimum | Typical | Maximum |
|--------------------------------|---------|---------|---------|
| Supply Voltage                 |         | +3.3 V  |         |
| Operating Case Temperature     | -40 C   |         | +85 C   |
| Operating Junction Temperature | -40 C   |         | +125 C  |

# AM1101 - Bypassable Amplifier



# 2 GHz to 26.5 GHz Bypassable Gain Block

#### **DC Electrical Characteristics**

(T = 25 °C unless otherwise specified)

| Parameter         | <b>Testing Conditions</b> | Minimum | Typical | Maximum |
|-------------------|---------------------------|---------|---------|---------|
| DC Supply Voltage |                           |         | +3.3 V  |         |
| DC Supply Current | Amplifier Enabled         |         | 31 mA   |         |
|                   | Amplifier Bypassed        |         | 1 mA    |         |
| Power Dissipated  | Amplifier Enabled         |         | 102 mW  |         |
|                   | Amplifier Bypassed        |         | 3 mW    |         |
| Logic Level Low   |                           | -0.1 V  |         | +0.4 V  |
| Logic Level High  |                           | +2.2 V  |         | +VDD    |
| Control Current   | CTL = +3.3V               |         | 125 µA  |         |

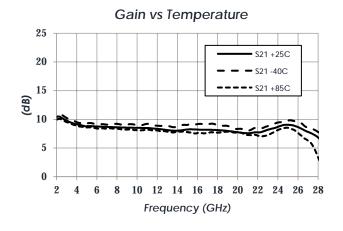
#### **RF Performance**

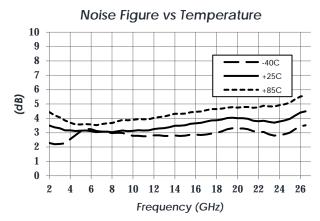
(T = 25 °C unless otherwise specified)

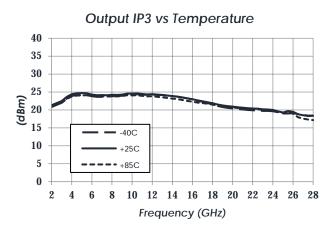
| Parameter       | <b>Testing Conditions</b> | Minimum | Typical | Maximum  |
|-----------------|---------------------------|---------|---------|----------|
| Frequency Range |                           | 2 GHz   |         | 26.5 GHz |
| Gain            | f = 2 GHz                 |         | 10 dB   |          |
|                 | f = 13 GHz                |         | 8 dB    |          |
|                 | f = 26.5 GHz              |         | 8 dB    |          |
| Return Loss     | f = 13 GHz                |         | -10 dB  |          |
| Output IP3      | f = 2 GHz                 |         | +20 dBm |          |
|                 | f = 13 GHz                |         | +24 dBm |          |
|                 | f = 26.5 GHz              |         | +18 dBm |          |
| Output P1dB     | f = 2 GHz                 |         | +9 dBm  |          |
|                 | f = 13 GHz                |         | +11 dBm |          |
|                 | f = 26.5 GHz              |         | +8 dBm  |          |
| Noise Figure    | f = 13 GHz                |         | 3.5 dB  |          |

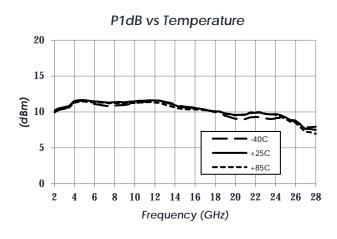
### **Timing Characteristics**

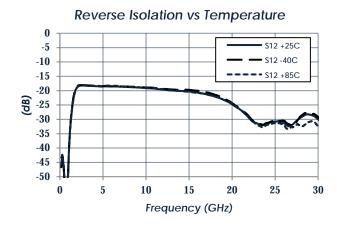
| Parameter                             | Minimum | Typical | Maximum |
|---------------------------------------|---------|---------|---------|
| Switching Speed (Amp Bypass → Amp On) |         | 70 ns   |         |
| Switching Speed (Amp On → Amp Bypass) |         | 10 ns   |         |

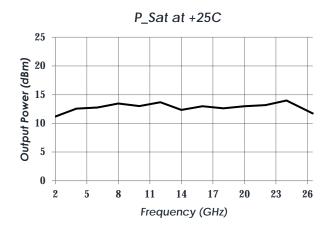

#### **State Table**


| CTL  | Amplifier |
|------|-----------|
| Low  | Bypassed  |
| High | Enabled   |





### **Typical Performance**


(VDD = +3.3 V, Amplifier Enabled)

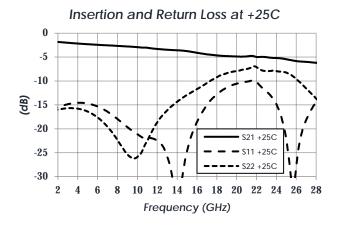


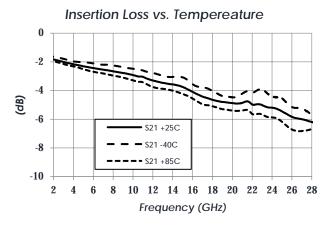


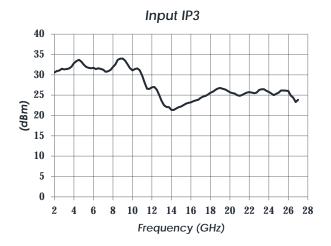


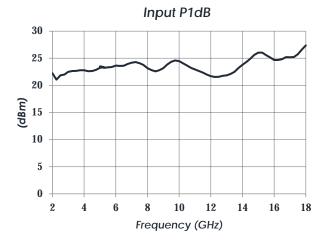




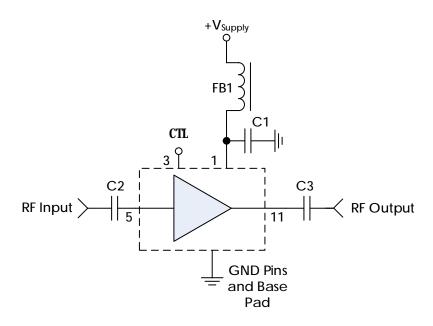





## **Typical Performance (continued)**

(VDD= +3.3 V, Amplifier Bypassed)









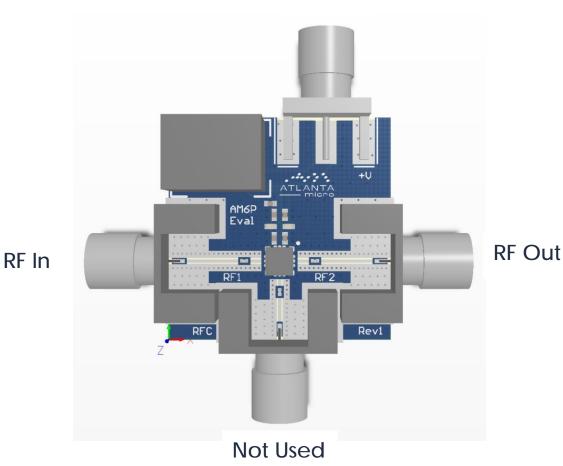



# **Typical Application**



# Recommended Component List (or equivalent):

| Part   | Value  | Part Number        | Manufacturer  |
|--------|--------|--------------------|---------------|
| C1     | 0.1 uF | C1005X7R1H104K05BB | TDK           |
| C2, C3 | 0.1 uF | 0201BB104KW160     | Passives Plus |
| FB1    | -      | MMZ1005A222E       | TDK           |


#### Notes:

- 1. DC blocking capacitors should be high performance, low-loss, broadband capacitors for optimum performance.
- 2. Control line filtered internally providing high frequency isolation.



### **Evaluation PC Board**





Note: Some items shown in the image above may not be installed on the evaluation board

## **Related Parts**

| Part Number Descri | iption |
|--------------------|--------|
|--------------------|--------|

| AM1067 | 5 GHz | to 20 | GHz    | Bypassable Amplifier |
|--------|-------|-------|--------|----------------------|
| AM1075 | 5 GHz | to 26 | .5 GHz | Bypassable Amplifier |
| AM1100 | 2 GHz | to 26 | .5 GHz | Low Noise Amplifier  |
| AM1102 | DC    | to 21 | GHz    | Low Noise Amplifier  |





# **Component Compliance Information**

**RoHS**: Atlanta Micro, Inc. hereby certifies that all products comply with the EC Directive 2011/65/EC on the Restriction of Hazardous Substances, commonly known as EU-RoHS 6 and 10. All products supplied by Atlanta Micro shall be compliant with the European Directive 2011/65/EC based on the following substance list.

| Substance List                        | Allowable Maximum Concentration |
|---------------------------------------|---------------------------------|
| Lead (Pb)                             | <1000 PPM (0.1% by weight)      |
| Mercury (Hg)                          | <1000 PPM (0.1% by weight)      |
| Cadmium (Cd)                          | <75 PPM (0.0075% by weight)     |
| Hexavalent Chromium (CrVI)            | <1000 PPM (0.1% by weight)      |
| Polybrominated Biphenyls (PBB)        | <1000 PPM (0.1% by weight)      |
| Polybrominated Diphenyl ethers (PBDE) | <1000 PPM (0.1% by weight)      |
| Decabromodiphenyl Deca BDE            | <1000 PPM (0.1% by weight)      |
| Bis (2-ethylheyl) Phthalate (DEHP)    | <1000 PPM (0.1% by weight)      |
| Butyl Benzyl Phthalate (BBP)          | <1000 PPM (0.1% by weight)      |
| Dibutyl Phthalate (DBP)               | <1000 PPM (0.1% by weight)      |
| Diisobutyl Phthalate (DIBP)           | <1000 PPM (0.1% by weight)      |

**REACH:** Atlanta Micro, Inc. neither uses nor intentionally adds any of the substances considered to be a Substance of Very High Concern (SVHC) as defined by the EU Regulation (EC) No. 1907-2006 on Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH).

Conflict Materials: Atlanta Micro does not knowingly use materials that are sourced from the Democratic Republic of Congo (DRC) or any other known conflict regions. Atlanta Micro's supply chain is comprised of sources that are both environmentally and socially responsible. We periodically review this requirement with our vendors to ensure continued compliance.

Atlanta Micro takes its responsibility as a global partner seriously and will use due diligence within our supply chain to ensure all standards are met to the best of our knowledge.