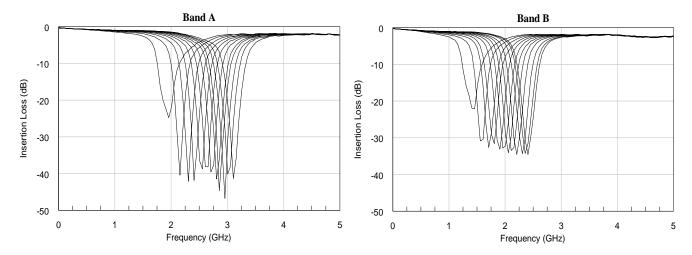

Description

AM3138 is an analog voltage-tunable notch filter bank covering the 1.3 GHz to 3.25 GHz frequency range. The AM3138 offers two MMIC chips covering 1.3 GHz to 2.5 GHz and 1.8 GHz to 3.25 GHz for fine granularity within the AM3138's operating range. Two separate tune voltages provide precise control of center frequency and notch bandwidth. The AM3138 provides an excellent filtering solution for a receiver or transceiver requiring flexible center frequency removal, high dynamic range, low insertion loss, and small size, low weight, and low power consumption (low SWAP).

Features

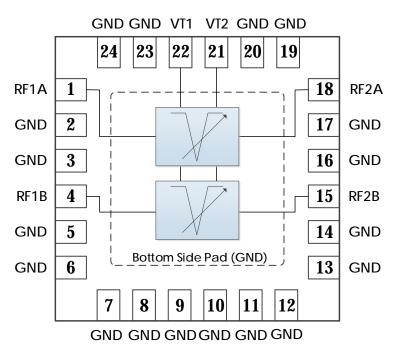

- Analog Tuning
- 2.3 dB Typical Insertion Loss
- 35+ dB Typical Rejection
- BW 20% of Tuned Frequency, TYP
- 0.0V to +6.0V Tuning Voltage Range
- 4mm QFN Package
- -40C to +85C Operation

Functional Diagram

Characteristic Performance

(Note: Only some states shown for simplicity)

Table of Contents


Description1	Recommended Operating Conditions 4
Features1	DC Electrical Characteristics
Functional Diagram1	RF Performance
Characteristic Performance1	Typical Performance
Revision History2	Typical Application7
Pin Layout and Definitions3	Package Details8
Specifications4	Evaluation PC Board9
Absolute Maximum Ratings4	Related Parts9
Handling Information4	Component Compliance Information 10

Revision History

Date	Revision Number	Notes
January 24, 2019	1	Initial Release

Pin Layout and Definitions

Pin Number	Pin Name	Pin Function
1	RF1A	RF1A 1.8 GHz to 3.25 GHz - 50 Ohms - DC Coupled, External
		Blocking Capacitor Required
2, 3	GND	Ground - Common
4	RF1B	RF1B 1.3 GHz to 2.5 GHz – 50 Ohms – DC Coupled, External Blocking Capacitor Required
5 - 14	GND	Ground - Common
15	RF2B	RF2B 1.3 GHz to 2.5 GHz - 50 Ohms - DC Coupled, External
		Blocking Capacitor Required
16, 17	GND	Ground - Common
18	RF2A	RF2A 1.8 GHz to 3.25 GHz - 50 Ohms - DC Coupled, External
		Blocking Capacitor Required
19, 20	GND	Ground - Common
21	VT2	Notch Tune Voltage 2
22	VT1	Notch Tune Voltage 1
23, 24	GND	Ground - Common
Bottom Pad	GND	Ground - Common

Specifications

Absolute Maximum Ratings

	Minimum	Maximum
DC Control Voltage	0.0 V	+10.0 V
RF Input Power		+27 dBm
Operating Junction Temperature	-40 C	+150 C
Storage Temperature Range	-50 C	+150 C

Note: Any device operation beyond the Absolute Maximum Ratings may result in permanent damage to the device. The values listed in this table are extremes and do not imply functional operation of the device at these or any other conditions beyond what is listed under Recommended Operating Conditions. Any part subjected to conditions outside of what is recommended for an extended amount of time may suffer from reliability concerns.

Handling Information

	Minimum	Maximum
Storage Temperature Range (Recommended)	-50 C	+125 C
Moisture Sensitivity Level	MSL 1	

Atlanta Micro products are electrostatic sensitive. Follow safe handling practices to avoid damage

Recommended Operating Conditions

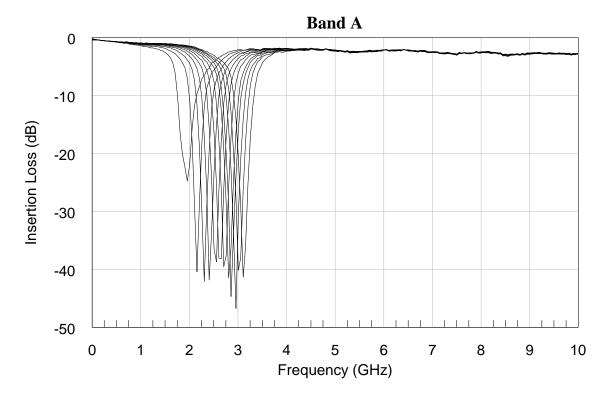
	Minimum	Typical	Maximum
DC Control Voltage	0.0 V		+6.0 V
Operating Case Temperature	-40 C		+85 C
Operating Junction Temperature	-40 C		+125 C

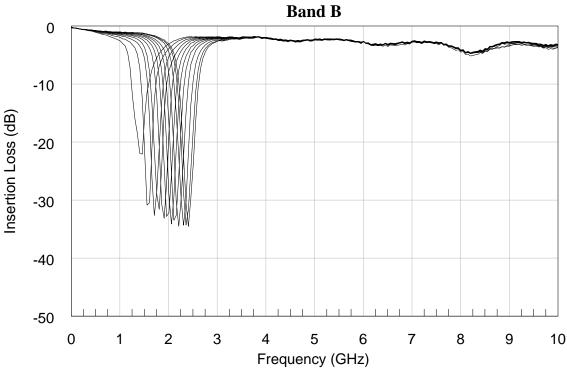
DC Electrical Characteristics

(T = 25 °C unless otherwise specified)

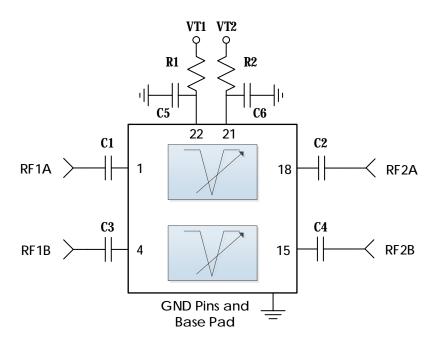
Parameter	Testing Conditions	Minimum	Typical	Maximum
DC Control Voltage		0.0 V		+6.0 V
DC Control Current			< 1mA	

RF Performance


(T = 25 °C unless otherwise specified)


Parameter	Testing Conditions	Minimum	Typical	Maximum
Frequency Range		1.3 GHz		3.25 GHz
Insertion Loss			2.3 dB	
Notch Depth			35 dB	
Return Loss			10 dB	

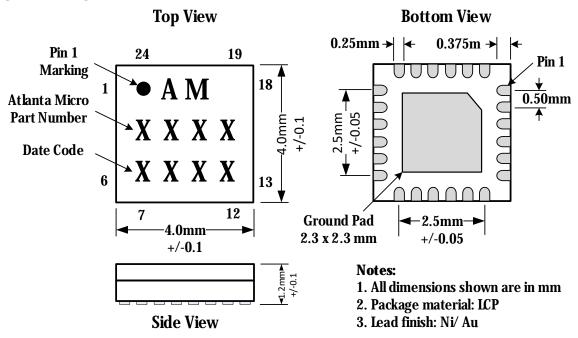
Typical Performance


(Note: Only some states shown for simplicity)

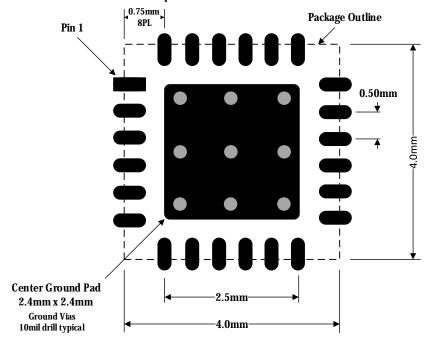
Typical Application

Recommended Component List (or equivalent):

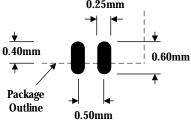
Part	Value	Part Number	Manufacturer
C1 – C4	0.1 μF	0201BB104KW160	Passives Plus
C5, C6	0.1 μF	C1005X7R1H104K050BB	TDK
R1, R2	100 Ω	CRCW0402100RFKED	Vishay


Notes:

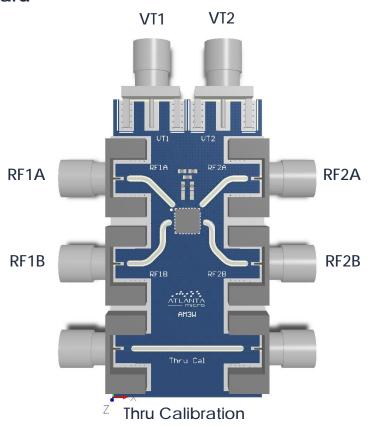
- 1. RC filtering on control lines is recommended to prevent digital noise from coupling to RF path.
 - a. Select tune voltage line RC filter values based on desired logic source decoupling and switching speed.



Package Details


Package Drawing

Recommended Footprint


Pad and Spacing Detail 0.25mm

Recommend 0.08mm soldermask oversize beyond pad outlines

Evaluation PC Board

Related Parts

Part Number				Description
AM3129	0.7 GHz	to	6 GHz	Switched Analog Tunable Notch Bank
AM3137	0.7 GHz	to	2 GHz	Analog Tunable Notch Filter Bank
AM3139	2.5 GHz	to	6 GHz	Analog Tunable Notch Filter Bank
AM3089	2 GHz	to	18 GHz	Switched Analog Tunable BPF Bank
AM3134	2 GHz	to	4.5 GHz	Analog Tunable Bandpass Filter Bank
AM3135	3.5 GHz	to	9 GHz	Analog Tunable Bandpass Filter Bank
AM3136	8 GHz	to	19 GHz	Analog Tunable Bandpass Filter Bank

Component Compliance Information

RoHS: Atlanta Micro, Inc. hereby certifies that all products comply with the EC Directive 2011/65/EC on the Restriction of Hazardous Substances, commonly known as RoHS II. All products supplied by Atlanta Micro shall be compliant with the European Directive 2011/65/EC based on the following substance list.

Substance List	Allowable Maximum Concentration
Lead (Pb)	<1000 PPM (0.1% by weight)
Mercury (Hg)	<1000 PPM (0.1% by weight)
Cadmium (Cd)	<75 PPM (0.0075% by weight)
Hexavalent Chromium (CrVI)	<1000 PPM (0.1% by weight)
Polybrominated Biphenyls (PBB)	<1000 PPM (0.1% by weight)
Polybrominated Diphenyl ethers (PBDE)	<1000 PPM (0.1% by weight)
Decabromodiphenyl Deca BDE	<1000 PPM (0.1% by weight)

REACH: Atlanta Micro, Inc. neither uses nor intentionally adds any of the substances considered to be a Substance of Very High Concern (SVHC) as defined by the EU Regulation (EC) No. 1907-2006 on Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH).

Conflict Materials: Atlanta Micro does not knowingly use materials that are sourced from the Democratic Republic of Congo (DRC) or any other known conflict regions. Atlanta Micro's supply chain is comprised of sources that are both environmentally and socially responsible. We periodically review this requirement with our vendors to ensure continued compliance.

Atlanta Micro takes its responsibility as a global partner seriously and will use due diligence within our supply chain to ensure all standards are met to the best of our knowledge.