

Cobalt 78640

1-channel 3.6 GHz or 2-channel 1.8 GHz, 12-bit A/D PCIe board with Virtex-6 FPGA

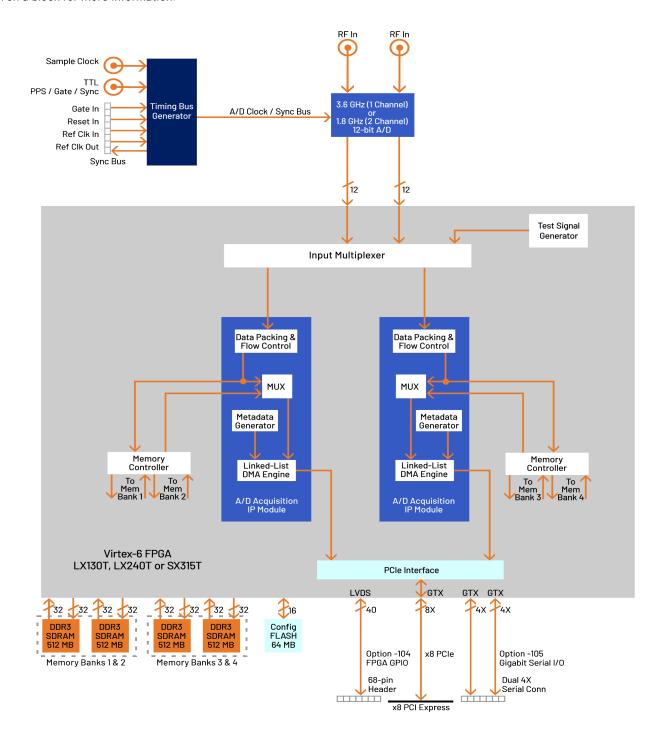
Complete radar and software radio interface solution

- Radar and software radio receiver
- Communications receiver
- Analog signal interface for data recording
- Wideband data acquisition

- Remote monitoring
- Sensor interfaces

The 78640 is a high-speed data converter, suitable for connection to HF or IF ports of a communications or radar system. Its built-in data capture features offer an ideal turnkey solution as well as a platform for developing and deploying custom FPGA processing IP.

The 78640 includes a 3.6 GHz, 12-bit A/D converter and four banks of memory. In addition to supporting PCI Express Gen. 2 as a native interface, the 78640 includes optional general-purpose and gigabit serial connectors for application-specific I/O protocols.


FEATURES

- Supports Xilinx® Virtex®-6 LXT and SXT FPGA
- One-channel mode with 3.6 GHz, 12-bit A/D
- Two-channel mode with 1.8 GHz, 12-bit A/Ds
- 2 GB of DDR3 SDRAM
- Clock/sync bus for multiboard synchronization
- PCI Express (Gen. 1 & 2), interface, up to x8
- Optional user-configurable gigabit serial interface
- Optional LVDS connections to the FPGA for custom I/O

78640 BLOCK DIAGRAM

Click on a block for more information.

THE COBALT ARCHITECTURE

The Cobalt® Architecture features a Xilinx Virtex-6 FPGA. All of the board's data and control paths are accessible by the FPGA, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Cobalt Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Cobalt family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The 78640 factory-installed functions include an A/D acquisition IP module.

In addition, IP modules for DDR3 memories, a controller for all data clocking and synchronization functions, a test signal generator and a PCle interface complete the factory-installed functions and enable the 78640 to operate as a complete turnkey solution, without the need to develop any FPGA IP.

XILINX VIRTEX-6 FPGA

The Virtex-6 FPGA site can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX130T, LX240T, or SX315T. The SXT part features 1344 DSP48E slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, one of the lower-cost LXT FPGAs can be installed.

A/D CONVERTER STAGE

The board's analog interface accepts analog HF or IF inputs on a pair of front panel SSMC connector with transformer coupling into a Texas Instruments ADC12D1800 12-bit A/D. The converter operates in single-channel

interleaved mode with a sampling rate of 3.6 GHz and an input bandwidth of 1.75 GHz; or, in dual-channel mode with a sampling rate of 1.8 GHz and input bandwidth of 2.8 GHz.

The ADC12D1800 provides a programmable 15-bit gain adjustment allowing the 78640 to have a full scale input range of +2 dBm to +4 dBm. A built-in AutoSync feature supports A/D synchronization across multiple modules.

The A/D digital outputs are delivered into the Virtex-6 FPGA for signal processing, data capture or for routing to other module resources.

A/D ACQUISITION MODULE

The 78640 features an A/D Acquisition IP Module for easy capture and data moving. The IP module can receive data from the A/D, or a test signal generator. The IP module has associated memory banks for buffering data in FIFO mode or for storing data in transient capture mode. In single-channel mode, all four banks are used to store the singlechannel of input data. In dual-channel mode, memory banks 1 and 2 store data from input channel 1 and memory banks 3 and 4 store data from input channel 2. In both modes, continuous, full-rate transient capture of 12-bit data is supported.

The memory banks are supported with a DMA engine for moving A/D data through the PCle interface. This powerful linked-list DMA engine is capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is very useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing a sample-accurate time stamp, and data length information. These actions simplify the host

processor's job of identifying and executing on the data.

CLOCKING AND SYNCHRONIZATION

The 78640 accepts a 1.8 GHz dual-edge sample clock via a front panel SSMC connector. A second front panel SSMC accepts a TTL signal that can function as Gate, PPS or Sync.

A front panel multipin sync bus connector allows multiple modules to be synchronized, ideal for larger multichannel systems. The sync bus includes gate, reset and in and out reference clock signals. Multiple 78640's can be synchronized using the Cobalt high-speed sync module to drive the sync bus.

MEMORY RESOURCES

The 78640 architecture supports four independent memory banks of DDR3 SDRAM. Each bank is 512 MB deep and is an integral part of the module's DMA and data capture capabilities. Built-in memory functions include an A/D data transient capture mode for taking snapshots of data for transfer to a host computer.

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes.

PCI EXPRESS INTERFACE

The Model 78640 includes an industry standard interface fully compliant with PCI Express Gen. 1 & 2 bus specifications. Supporting PCIe links of x4 or x8, the interface includes multiple DMA controllers for efficient transfers to and from the board.

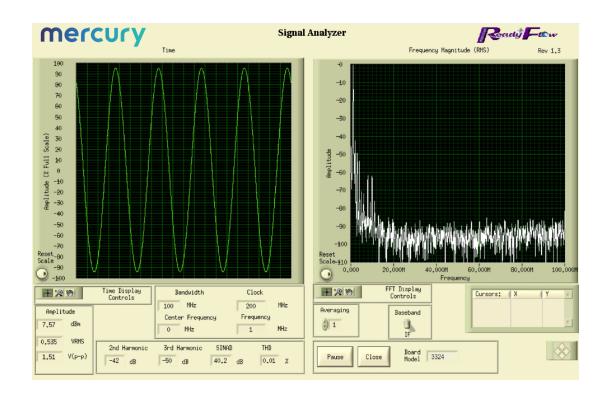
READYFLOW

Mercury provides ReadyFlow® BSPs (Board Support Packages) for all Cobalt, Onyx, and Flexor products. Available for both Linux and Windows, these packages:

- Provide a path for quick start-up through application completion
- Allow programming at high, intermediate and low levels to meet various needs
- Are illustrated with numerous examples
- Include complete documentation and definitions of all functions
- Include library and example source code.

ReadyFlow BSPs contain C-language examples that can be used to demonstrate the capabilities of Cobalt, Onyx, and Flexor products. These programming examples will help you get an immediate start on writing your own application. They provide sample code that is known to work, giving you a means of verifying that your board set is operational.

COMMAND LINE INTERFACE


The Command Line Interface provides access to pre-compiled executable examples that operate the hardware right out of the box, without the need to write any code. Board-specific hardware

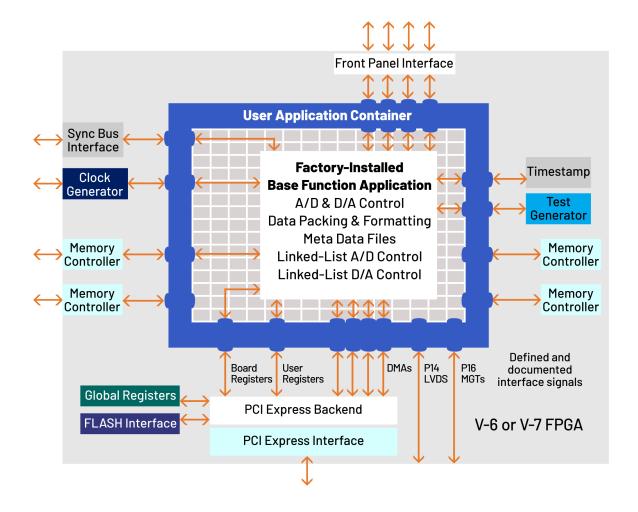
operating arguments can be entered in the command line to control parameters: number of channels to enable, sample clock frequency, data transfer size, reference clock frequency, reference clock source, etc.

The Command Line Interface can be used to call an example application from within a larger user application to control the hardware, and parameter arguments are passed to the application for execution. Functions that control data acquisition automatically save captured data to a pre-named host file or are routed to the Signal Analyzer example function for display.

SIGNAL ANALYZER

When used with the Command Line Interface, the Signal Analyzer allows users to immediately start acquiring and displaying A/D data. A full-featured analysis tool, the Signal Analyzer displays data in time and frequency domains. Built-in measurement functions display 2nd and 3rd harmonics, THD, and SINAD. Interactive cursors allow users to mark data points and instantly calculate amplitude and frequency of displayed signals.

GATEFLOW


The GateFlow FPGA Design Kit (FDK) allows the user to modify, replace and extend the standard installed functions in the FPGA to incorporate special modes of operation, new control structures, and specialized signal-processing algorithms.

The Cobalt (Virtex-6), Onyx (Virtex-7), and Flexor (Virtex-7) architectures configure the FPGA with standard factory-supplied interfaces including memory controllers, DMA engines, A/D and D/A interfaces, timing and synchronization structures, triggering and gating logic, time stamping and header tagging, data formatting engines, and the PCIe interface. These resources are connected to the User Application Container using well-defined ports that present easy-to-use data and control signals, effectively abstracting the lower-level details of the hardware.

The User Application Container

Shown below is the FPGA block diagram of a typical Cobalt, Onyx or Flexor module. The User Application Container holds a collection of different installed IP modules connected to the various interfaces through the standard ports surrounding the container. The specific IP modules for each product are described in further detail in the datasheet of that product.

The GateFlow FDK provides a complete Xilinx's ISE or Vivado project folder containing all the files necessary for the FPGA developer to recompile the entire project with or without any required changes. VHDL source code for each IP module provides excellent examples of how the IP modules work, how they might be modified, and how they might be replaced with custom IP to implement a specific function.

FRONT PANEL CONNECTIONS

The XMC front panel includes four SSMC coaxial connectors, and a 19-pin μ Sync connector for input/output of timing and analog signals. The front panel also includes five LEDs.

- PPS LED: The green PPS IN LED illuminates when a
- valid PPS signal is detected. The LED will blink at the rate of the PPS signal.
- PPS Input
 Connector: One
 SSMC coaxial
 connector, labeled
 PPS IN for the input
 of an external PPS or
 Gate signal.
- Sync Bus Connector: The 19pin Sync Bus front panel connectors labeled

SYNC/GATE, provides clock reset, reference clock, and gate inputs for A/D

processing, and reference clock output for synchronizing multiple boards using an external sync module.

- Over Temperature LED: The red TMP LED illuminates when an overtemperature or over-voltage condition is indicated by any of the temperature/voltage sensors on the PCB.
- Link LED: The green LNK LED blinks when a valid link has been established over the PCle interface.
- Analog Input Connectors: Two SSMC coaxial connector, labeled IN 1 and IN 2 for the ADC12D1800 A/D converter input channels.

- ADC Overload LED: The red OV (overload) LED indicates either an overload in the ADC12D1800 or an ADC FIFO overrun.
- Clock LED: The green EXT CLK IN LED illuminates when a valid sample clock signal is detected. If the LED is not illuminated, no clock has been detected and no data from the input stream can be processed.
- Clock Input Connector: One SSMC coaxial connector, labeled EXT CLK IN for the input of an external sample clock for the ADC12D1800 A/D converter.

SPECIFICATIONS

Front Panel Analog Signal Inputs

Input Type: Transformer-coupled, front panel female SSMC connectors

A/D Converter

Type: Texas Instruments ADC12D1800

Sampling Rate: Single-channel mode: 500 MHz to 3.6 GHz; dual-channel mode: 150 MHz to 1.8 GHz

Resolution: 12 bits

Input Bandwidth: single-channel mode: 1.75 GHz; dual-channel mode: 2.8 GHz

Full Scale Input: +2 dBm to +4 dBm, programmable

Sample Clock Sources

Front panel SSMC connector

Sync Bus

Multipin connectors, bus includes gate, reset and in and out reference clock

External Trigger Input

Type: Front panel female SSMC connector, TTL

Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Array

 Standard: Xilinx Virtex-6 XC6VLX130T-2 Optional: Xilinx Virtex-6 XC6VLX240T-2 or XC6VSX315T-2

Custom I/O

- Option -104: Connects 20 pairs of LVDS signals from the FPGA on PMC P14 to a 68-pin DIL ribboncable header on the PCIe board for custom I/O.
- Option -105: Connects two 4X gigabit serial links from the FPGA on XMC P16 to two 4X gigabit serial connectors along the top edge of the PCle board

Memory

Four 512 MB DDR3 SDRAM memory banks, 400 MHz DDR

PCI-Express Interface

PCI Express Bus: Gen. 1 or Gen. 2: x4

Environmental

Standard: L0 (air-cooled)

• Operating Temp: 0° to 50° C

Storage Temp: -20° to 90° C

 Relative Humidity: 0 to 95%, noncondensing

Option -702: L2 (air-cooled)

Operating Temp: -20° to 65° C

Storage Temp: -40° to 100° C

 Relative Humidity: 0 to 95%, noncondensing

Physical

Dimensions: Half-length PCle card, 4.38 x 7.13 in.

Depth: 181.0 mm (7.13 in.)

Height: 111 mm (4.38 in.)

Weight

PCIe Carrier: 110 grams (3.9 oz)

 XMC Module: Approximately 14 oz. (400 grams)

ORDERING INFORMATION

Model	Description
78640	1-Ch. 3.6 GHz or 2-Ch. 1.8 GHz, 12- bit A/D, Virtex-6 FPGA - x8 PCle

Options	Description		
-002*	2-FPGA speed grade		
-062	XC6VLX240T FPGA		
-064	XC6VSX315T FPGA		
-104	LVDS FPGA I/O to VPX P2		
-105	Gigabit serial FPGA I/O to VPX P1		
-155*	Two 512 MB DDR3 SDRAM Memory Banks (Banks 1 and 2)		
-165*	Two 512 MB DDR3 SDRAM Memory Banks (Banks 3 and 4)		
-702	Air-cooled, Level 2		
*This option	*This option is always required. Contact Mercury		

FORM FACTORS

Cobalt products are available in standard form factors including 3U VPX, 6U VPX, PCIe, and XMC. The Cobalt Model 71640 XMC (1-Channel 3.6 GHz or 2-Channel 1.8 GHz 12-bit A/D with Virtex-6 FPGA) has the following variants:

Model	
52640	3U VPX board (single XMC)
57640	6U VPX board (single XMC)
58640	6U VPX board (dual XMC)
71640	XMC module
78640	PCIe board (single XMC)

DEVELOPMENT SYSTEMS

Mercury offers development systems for Cobalt products. They come with all pretested software and hardware ready for immediate operation. These systems are intended to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Cobalt boards. Please contact Mercury to configure a system that matches your requirements.

ACCESSORY PRODUCTS

for compatible option combinations.

Model	Description
2171	Cable Kit: SSMC to SMA
7892	System Synchronizer and Distribution Board – PCle

mercury

Corporate Headquarters

50 Minuteman Road Andover, MA 01810 USA

- +1 978.967.1401 tel
- +1 866.627.6951 tel
- **+1 978.256.3599** fax

International Headquarters Mercury International

Avenue Eugène-Lance, 38 PO Box 584 CH-1212 Grand-Lancy 1 Geneva, Switzerland

+41 22 884 5100 tel

Learn more

Visit: mrcy.com/go/MP78640 For technical details, contact: mrcy.com/go/CF78640

The Mercury Systems logo is a registered trademark of Mercury Systems, Inc. Other marks used herein may be trademarks or registered trademarks of their respective holders. Mercury products identified in this document conform with the specifications and standards described herein. Conformance to any such standards is based solely on Mercury's internal processes and methods. The information contained in this document is subject to change at any time without notice.

© 2023 Mercury Systems, Inc. 1-0-061223-DS-C78640