mercury

Jade 52132

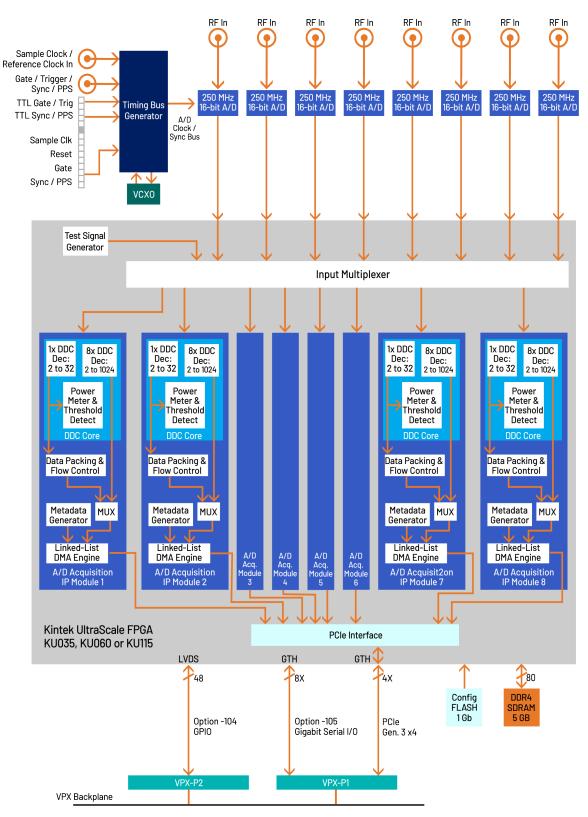
8-channel 250 MHz A/D with DDC 3U VPX board with Kintex UltraScale FPGA

Complete radar and software radio interface solution

- Radar and software radio receiver
- Communications receiver
- Analog signal interface for data recording
- Wideband data acquisition
- Remote monitoring
- Sensor interfaces

The 52132 is a multichannel, high-speed data converter with programmable DDCs (digital downconverters). It is suitable for connection to HF or IF ports of a communications or radar system. Its built-in data capture feature offers an ideal turnkey solution as well as a platform for developing and deploying custom FPGA-processing IP.

It includes eight A/Ds, a complete multiboard clock and sync section and a large DDR4 memory. In addition to supporting PCI Express Gen. 3 as a native interface, the 52132 includes optional high-band width connections to the Kintex UltraScale FPGA for custom digital I/O.


FEATURES

- Exceptional dynamic range and analog signal integrity
- Xilinx[®] Kintex[®] UltraScale[™] FPGA
- Eight 250 MHz 16-bit A/Ds
- Eight wideband DDCs (digital downconverters)
- 64 multiband DDCs
- 5 GB of 2400 MHz DDR4 SDRAM
- Sample clock synchronization to an external reference

- LVPECL clock/sync bus for multiboard synchronization
- PCI Express interface (Gen. 1, 2 & 3) up to x4
- Optional >LVDS port and gigabit serial connections for custom FPGA I/O
- Ruggedized and conduction-cooled versions
- Navigator Design Suite for software and custom IP development

52132 BLOCK DIAGRAM

Click on a block for more information.

THE JADE ARCHITECTURE

Evolved from the proven designs of Mercury's Cobalt and Onyx families, Jade raises the processing performance with the new flagship family of Kintex UltraScale FPGAs from Xilinx. As the central feature of the board architecture, the FPGA has access to all data and control paths, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control.

The Jade architecture organizes the FPGA as a container for data-processing applications where each function exists as an intellectual property (IP) module. Each member of the Jade family is delivered with factory-installed applications ideally matched to the board's analog interfaces.

The 52132 factory-installed functions include eight A/D acquisition IP modules for simplifying data capture and transfer. Each of the eight acquisition IP modules contains a powerful, programmable DDC IP core; an IP module for DDR4 SDRAM memory; a controller for all data clocking and synchronization functions; a test signal generator; and a PCle interface. These complete the factory-installed functions and enable the 52132 to operate as a complete turnkey solution for many applications, thereby saving the cost and time of custom IP development.

EXTENDABLE IP DESIGN

For applications that require specialized functions, users can install their own custom IP for data processing. The Navigator[®] FPGA Design Kits include the board's entire FPGA design as a block diagram that can be edited in Xilinx's Vivado tool suite.

In addition to the block diagrams, all source code and complete IP core documentation is included. Developers can integrate their own IP along with the wide range of IP functions contained in the Navigator[®] IP library, or use the Navigator[®] kit to completely replace the IP with their own.

XILINX KINTEX ULTRASCALE FPGAS

The Kintex UltraScale FPGA site can be populated with FPGAs to match the specific requirements of the processing task. Included are the KU060 and the KU 115. The KU115 features 5520 DSP48E2 slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources or logic, the KU060 FPGA can be installed.

A/D CONVERTER STAGE

The board's analog interface accepts eight analog HF or IF inputs on front panel MMCX connectors with transformer coupling into four Texas Instruments ADS42LB69 dual 250 MHz, 16 bit A/D converters.

The digital outputs are delivered into the Kintex UltraScale FPGA for signal-processing or routing to other module resources.

A/D ACQUISITION IP MODULES

The 52132 features eight A/D Acquisition IP Modules for easily capturing and moving data. Each IP module can receive data from any of the eight A/Ds or a test signal generator.

Each IP module has an associated DMA engine for easily moving A/D data through the PCIe interface. These powerful linked-list DMA engines are capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing A/D channel ID, a sample-accurate time stamp and data length information. These actions simplify the host processor's job of identifying and executing on the data.

DDC IP CORES

Within each A/D Acquisition IP Module are two powerful DDC IP cores. A single-channel wideband DDC core and an eight-channel multiband DDC core. Each acquisition module can choose between the two cores allowing for a very flexible down conversion solution.

Each wideband DDC has an independent 32-bit tuning frequency setting that ranges from DC to fs, where fs is the A/D sampling frequency. Each DDC can have its own unique decimation setting. Decimations can be programmed from 2 to 32.

Each multiband DDC has eight DDC channels each with its own independent 32-bit tuning frequency setting that ranges from DC to fs, where fs is the A/D sampling frequency. Decimations can be programmed from 16 to 1024 in steps of 8.

The decimating filter for all DDCs accept a unique set of usersupplied 24-bit coefficients. The 80% default filters deliver an output bandwidth of $0.8^* fs/N$, where N is the decimation setting. The rejection of adjacent-band components within the 80% output bandwidth is better than 100 dB. Each DDC delivers a complex output stream consisting of 24-bit I + 24-bit Q or 16-bit I + 16-bit Q samples at a rate of fs/N.

CLOCKING AND SYNCHRONIZATION

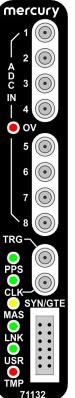
An internal timing bus provides all timing and synchronization required by the A/D converters. It includes a clock, a sync and gate or trigger signals. An onboard clock generator receives an external sample clock from the front panel MMCX connector. This clock can be used directly by the A/D or divided by a built-in clock synthesizer circuit.

In an alternate mode, the sample clock can be sourced from an on-board programmable voltage-controlled crystal oscillator. In this mode, the front panel MMCX connector can be used to provide a 10 MHz reference clock for synchronizing the internal oscillator.

A front panel 12-pin LVPECL Clock/Sync connector allows multiple boards to be synchronized. In the slave mode, it accepts LVPECL inputs that drive the clock, sync and gate signals. In the master mode, the LVPECL bus can drive the timing signals for synchronizing multiple boards.

Up to three additional boards can be driven from the LVPECL bus master, supporting synchronous sampling and sync functions across all connected boards. For larger systems, the Model 5292 System Synchronizer supports additional boards in increments of eight.

MEMORY RESOURCES


The 52132 architecture supports a 5 GB bank of DDR4 SDRAM memory. User-installed IP along with the Mercury-supplied DDR4 controller core within the FPGA can take advantage of the memory for custom applications.

PCI EXPRESS INTERFACE

The 52132 includes an industry-standard interface fully compliant with PCI Express Gen. 1, 2 and 3 bus specifications. Supporting PCIe links up to x4, the interface includes multiple DMA controllers for efficient transfers to and from the board.

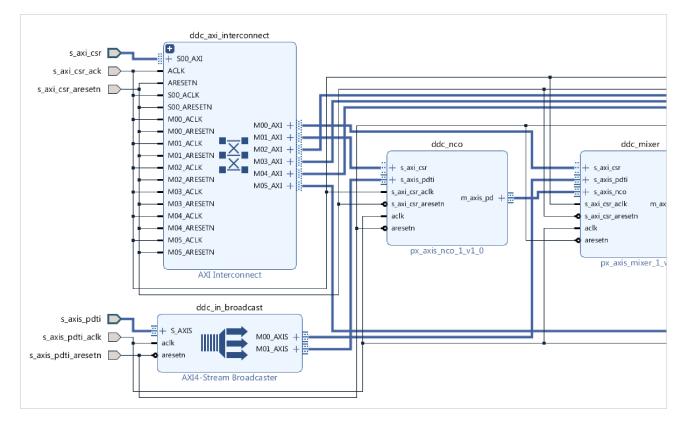
FRONT PANEL CONNECTIONS

The front panel includes ten MMCX coaxial connectors for clock, trigger, and analog input signals, and a 12-pin Sync Bus input/output connector. The front panel also includes seven LED indicators.

- Analog Input Connectors: Eight MMCX coaxial connectors, labeled In 1, 2, 3, 4, 5, 6, 7, and 8: one for each ADC input channel.
- ADC Overload LED: There is one red OV (overload) LED for all ADC inputs. This LED indicates either an overload detection in one of the ADS42LB69s, or an ADC FIFO overrun.
- Trigger Input Connector: One MMCX coaxial connector, labeled TRIG, for input of an external trigger.
- **PPS LED:** The green **PPS** LED illuminates when a valid PPS signal is detected. The LED will blink at the rate of the PPS signal.
- Clock LED: The green CLK LED illuminates when a valid sample clock signal is detected. If the LED is not illuminated, no clock has been detected and no data from the input stream can be processed.
- Clock Input Connector: One MMCX coaxial connector, labeled CLK, for input of an external sample clock.

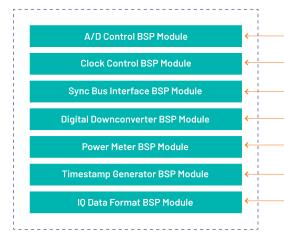
• Master LED: The yellow MAS LED illuminates when this board is the Sync Bus Master. When

only a single board is used, it must be a Master.

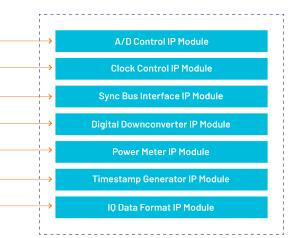

- Link LED: The green LNK LED indicates the link speed when a valid link has been established over the PCle interface, as follows: Gen 1 - LED blinks slowly (less than once per second); Gen 2 - LED blinks about once per second; Gen 3 - LED will be constantly on.
- User LED: The green USR LED is for user applications.
- Over Temperature LED: The red TMP LED illuminates when an over-temperature or over-voltage condition is indicated by any of the temperature/voltage sensors on the PCB.
- Sync Bus Connector: The 12-pin µSync front panel connector, labeled SYNC/GATE, provides clock, sync and gate input/output signals for the Low Voltage Positive Emitter Coupled Local (LVPECL) Sync Bus.

NAVIGATOR DESIGN SUITE

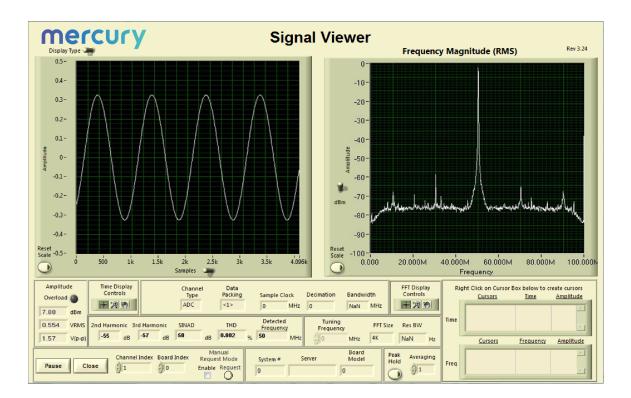
For applications that require specialized functions, the Navigator Design Suite allows customers to fully utilize the processing power of the FPGA. It includes an FPGA design kit for integrating custom IP into the factory-shipped design, and a board support package for creating host applications for control of all hardware and FPGA IP-based functions.


The **Navigator FPGA Design Kit (FDK)** for the Xilinx[®] Vivado[®] Design Suite includes the complete Vivado project folder for each Jade product with all design files for the factory-installed FPGA IP. Vivado's IP Integrator is a graphical design entry tool that visually presents the complete block diagram of all IP blocks so the developer can access every component of the Jade design. Developers can quickly import, delete, and modify IP blocks and change interconnection paths using simple mouse operations. Navigator FDK includes an IP core library of more than 100 functions representing a wealth of resources for DSP, data formatting, timing, and streaming operations, all based on the powerful AXI4 standard. multilevel documentation for each IP core is a mouse click away, and fully consistent with Xilinx IP cores.

The **Navigator Board Support Package (BSP)** provides software support for Jade boards. It enables operational control of all hardware functions on the board and IP functions in the FPGA. The BSP structure is designed to complement the functions of the FDK by maintaining a one-to-one relationship between FDK and BSP components. For each IP block found in the FDK library, a matching software module can be found in the BSP. This organization simplifies the creation and editing of software to support new IP functions and modifications to existing IP cores.


Navigator IP FPGA Design viewed in IP Integrator

NAVIGATOR BOARD SUPPORT PACKAGE



Because all Jade boards are shipped with a full suite of built-in IP functions and numerous software examples, new applications can be developed by building on the provided software examples or built entirely new with the BSP extensive libraries. All BSP libraries are provided as C-language source for full access and code transparency.

NAVIGATOR FPGA DESIGN KIT

The Navigator BSP includes the **Signal Viewer**, a full-featured analysis tool, that displays data in time and frequency domains. Built-in measurement functions display 2nd and 3rd harmonics, THD (total harmonic distortion), and SINAD (signal to noise and distortion). Interactive cursors allow users to mark data points and instantly calculate amplitude and frequency of displayed signals. With the Signal Viewer users can install the Jade board and Navigator BSP and start viewing analog signals immediately.

SPECIFICATIONS

Front Panel Analog Signal Inputs

Input Type: Transformer-coupled, front panel female MMCX connectors

Transformer Type: Coil Craft WBC4-6TLB

Full Scale Input: +4 dBm into 50 ohms

3 dB Passband: 300 kHz to 700 MHz

A/D Converters

Type: Texas Instruments ADS42LB69

Sampling Rate: 10 MHz to 250 MHz

Resolution: 16 bits

Wideband Digital Downconverters

Quantity: Eight channels

Decimation Range: 2x to 32x

LO Tuning Freq. Resolution: 32 bits, 0 to $f_{\rm S}$

LO SFDR: >120 dB Phase Offset Resolution: 32 bits, 0 to 360 degrees

FIR Filter: 24-bit coefficients, 24-bit output, user-programmable coefficients

Default Filter Set: 80% bandwidth, <0.3 dB passband ripple, >100 dB stopband attenuation

Multiband Digital Downconverters

Quantity: Eight banks, 8 channels per bank

Decimation Range: 2x to 1024x in steps of 8

LO Tuning Freq. Resolution: 32 bits, 0 to $f_{\rm S'}$ independent tuning for each channel

LO SFDR: >120 dB

Phase Offset Resolution: 32 bits, 0 to 360 degrees

FIR Filter: 24-bit coefficients, 24-bit output, user-programmable coefficients

Default Filter Set: 80% bandwidth, <0.3 dB passband ripple, >100 dB stopband attenuation

Sample Clock Sources

On-board clock synthesizer

Clock Synthesizer

Clock Source: Selectable from onboard programmable VCXO (10 to 810 MHz), front panel external clock or LVPECL timing bus

Synchronization: VCXO can be locked to an external 4 to 180 MHz PLL system reference, typically 10 MHz

Clock Dividers: External clock or VCXO can be divided by 1, 2, 3, 4, 6, 8, or 16 for the A/D clock

External Clock

Type: Front panel female MMCX connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 10 to 800 MHz divider input clock or PLL system reference

Timing Bus

12-pin connector LVPECL bus includes, clock/sync/gate/PPS inputs and outputs; TTL signal for gate/trigger and sync/PPS inputs

External Trigger Input

Type: Front panel female SSMC connector, LVTTL

Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Array

Standard: Xilinx Kintex UltraScale XCKU035-2

- Option -084: Xilinx Kintex UltraScale XCKU060-2
- Option -087: Xilinx Kintex UltraScale XCKU115-2

Custom I/O

Option -104: provides 24 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O.

Option -105: provides an 8X gigabit link between the FPGA and the VPX P1 connector to support serial protocols.

Memory

Type: DDR4 SDRAM Size: 5 GB Speed: 1200 MHz (2400 MHz DDR)

PCI-Express Interface

PCI Express Bus: Gen. 1, 2 or 3: x4

Environmental

Standard: L0 (air-cooled)

- Operating Temp: 0° to 50° C
- Storage Temp: -20° to 90° C
- Relative Humidity: 0 to 95%, noncondensing

Option -702: L2 (air-cooled)

- Operating Temp: -20° to 65° C
- Storage Temp: -40° to 100° C
- Relative Humidity: 0 to 95%, noncondensing

Option -763: L3 (conduction-cooled)

- Operating Temp: -40° to 70° C
- Storage Temp: -50° to 100° C
- Relative Humidity: 0 to 95%, noncondensing

Physical

Dimensions: VPX board

Depth: 170.61 mm (6.717 in)

Height: 100 mm (3.937 in)

Weight: Approximately 14 oz (400 grams)

ORDERING INFORMATION

Model	Description
52132	8-channel 250 MHz A/D with DDCs and Kintex UltraScale FPGA - 3U VPX

Options:

-084	XCKU060-2 FPGA
-087	XCKU115-2 FPGA
-104	LVDS FPGA I/O through P14 connector
-105	Gigabit serial FPGA I/O through P16 connector
-702	Air-cooled, Level 2
-763	Conduction-cooled, Level 3
Contact Mercury for compatible option combinations and complete specifications of	

combinations and complete specifications of rugged and conduction-cooled versions. Options may change, so be sure to contact Mercury for the latest information.

ACCESSORY PRODUCTS

Model	Description
5292	High-Speed Synchronizer & Distribution Board
9192	Rackmount High-Speed System Synchronizer

DEVELOPMENT SYSTEMS

Mercury offers development systems for Jade products. They come with all pretested software and hardware ready for immediate operation. These systems are intended to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Jade boards. Please contact Mercury to configure a system that matches your requirements.

FORM FACTORS

Jade products are available in standard form factors including 3U VPX, 6U VPX, PCIe, and XMC. The Jade Model 71132 XMC (8-Channel 250 MHz A/D with Multiband DDC, Kintex UltraScale FPGA) has the following variants:

Model	
52132	3U VPX board (single XMC)
57132	6U VPX board (single XMC)
58132	6U VPX board (dual XMC)
71132	XMC module
78132	PCIe board (single XMC)

mercury

Corporate Headquarters

50 Minuteman Road Andover, MA 01810 USA +1 978.967.1401 tel +1 866.627.6951 tel +1 978.256.3599 fax

International Headquarters Mercury International

Avenue Eugène-Lance, 38 PO Box 584 CH-1212 Grand-Lancy 1 Geneva, Switzerland +41 22 884 5100 tel

Learn more

Visit: mrcy.com/go/MP52132

For technical details, contact: mrcy.com/CF52132

The Mercury Systems logo is a registered trademark of Mercury Systems, Inc. Other marks used herein may be trademarks or registered trademarks of their respective holders. Mercury products identified in this document conform with the specifications and standards described herein. Conformance to any such standards is based solely on Mercury's internal processes and methods. The information contained in this document is subject to change at any time without notice.

© 2023 Mercury Systems, Inc. 1-0-060823-DS-J52132