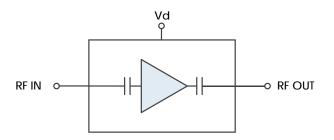
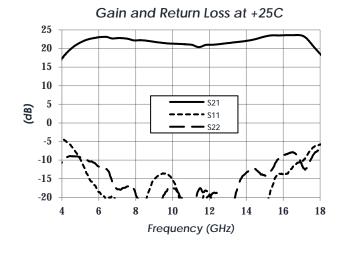
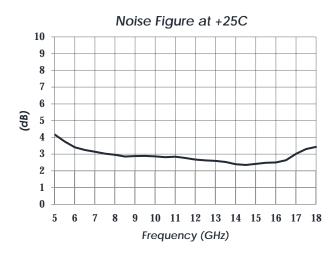


Description

The AM1082 is a high dynamic range, cascadable gain block covering the 5 to 17 GHz frequency range. The amplifier exhibits high gain and output power across its bandwidth, useful for many LO driver applications. Packaged in a 3mm QFN or a shielded module with internal 50Ω matching and DC blocking capacitors, the AM1082 represents a compact total PCB footprint.



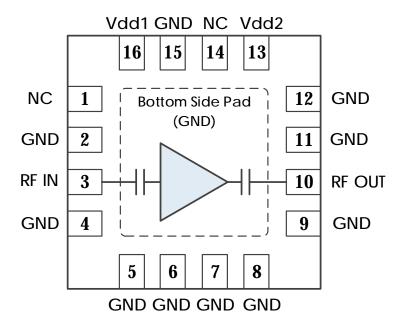

Features


- 22 dB Gain
- < 3.0 dB Noise Figure
- +31 dBm OIP3
- +20 dBm P1dB
- +22 dBm Psat
- +5.0 V, 126 mA Supply
- 3mm QFN
- -40C to +85C Operation
- No DC Blocking Caps Required

Functional Diagram

Characteristic Performance

Table of Contents


Description1	DC Electrical Characteristics5
Features1	RF Performance5
Functional Diagram1	Typical Performance6
Characteristic Performance1	Typical Application8
Revision History2	Part Ordering Details9
Pin Layout and Definitions3	Related Parts9
Specifications4	Evaluation PC Board9
Absolute Maximum Ratings4	Package Details10
Handling Information4	RF Shielded Module Details11
Recommended Operating Conditions4	Component Compliance Information 12
Thermal Information4	

Revision History

Date	Revision Number	Notes
July 19, 2019	1	Initial Release
November 26, 2019	1A	Updated Description to include shielded module packaging

Pin Layout and Definitions

Pin Number	Pin Name	Pin Function	
1	NC	Not Connected*	
2	GND	Ground - Common	
3	RF In	RF Input - 50 Ohms - AC Coupled	
4-9	GND	Not Connected*	
10	RF Out	RF Output - 50 Ohms - AC Coupled	
11,12	GND	Ground - Common	
13	Vdd2	DC Power Input	
14	NC	Not Connected*	
15	GND	Ground - Common	
16	Vdd1	DC Power Input	

^{*}NC pins may be grounded or left open.

Specifications

Absolute Maximum Ratings

	Minimum	Maximum
Supply Voltage	-0.3 V	+6.0 V
RF Input Power		+20 dBm
Operating Junction Temperature	-40 C	+150 C
Storage Temperature Range	-50 C	+150 C

Note: Any device operation beyond the Absolute Maximum Ratings may result in permanent damage to the device. The values listed in this table are extremes and do not imply functional operation of the device at these or any other conditions beyond what is listed under Recommended Operating Conditions. Any part subjected to conditions outside of what is recommended for an extended amount of time may suffer from reliability concerns.

Handling Information

	Minimum	Maximum
Storage Temperature Range (Recommended)	-50 C	+125 C
Moisture Sensitivity Level	MSL 3	

Atlanta Micro products are electrostatic sensitive. Follow safe handling practices to avoid damage

Recommended Operating Conditions

	Minimum	Typical	Maximum
Supply Voltage	+4.5 V	+5.0 V	+5.5 V
Operating Case Temperature	-40 C		+85 C
Operating Junction Temperature	-40 C		+130 C

Thermal Information

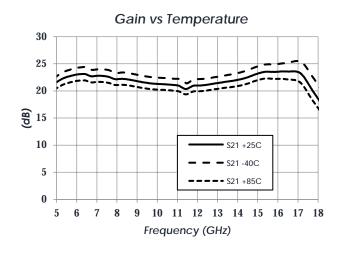
	Thermal Resistance (°C / W)
Junction to Case Thermal Resistance (θ _{JC})	72

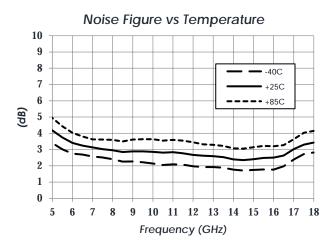
DC Electrical Characteristics

(T = 25 °C unless otherwise specified)

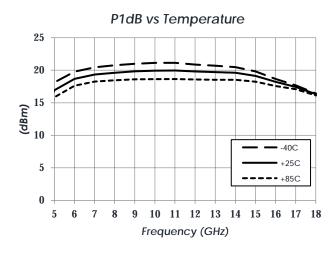
Parameter	Testing Conditions	Minimum	Typical	Maximum
DC Supply Voltage			+5.0 V	
DC Supply Current	Vdd1 = Vdd2 = +5.0 V		126 mA	
Power Dissipated	Vdd1 = Vdd2 = +5.0 V		0.63 W	

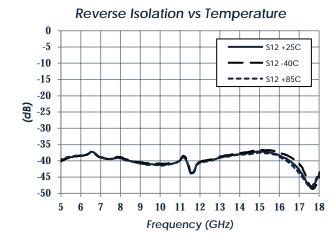
RF Performance

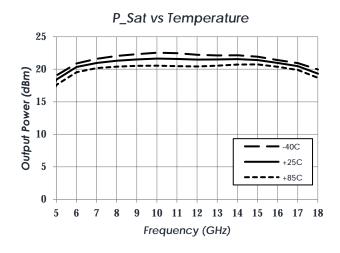

(T = 25 °C unless otherwise specified)

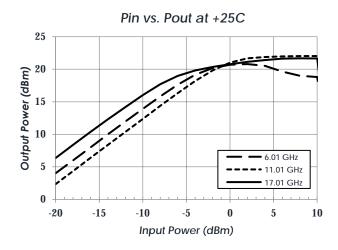

Parameter	Testing Conditions	Minimum	Typical	Maximum
Frequency Range		5 GHz		17 GHz
Gain	Vdd1 = Vdd2 = +5.0 V		22 dB	
Return Loss	Vdd1 = Vdd2 = +5.0 V		20 dB	
Output IP3	Vdd1 = Vdd2 = +5.0 V		31 dBm	
Output P1dB	Vdd1 = Vdd2 = +5.0 V		20 dBm	
Noise Figure	Vdd1 = Vdd2 = +5.0 V		3 dB	

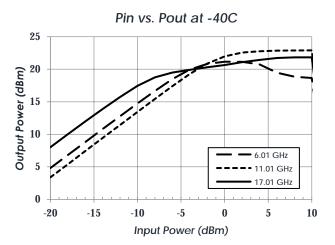


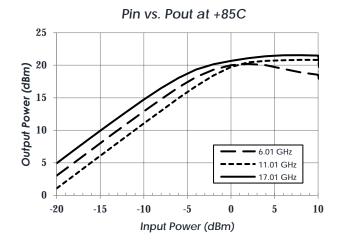

Typical Performance


(Vd = +5.0 V, Id = 126 mA)



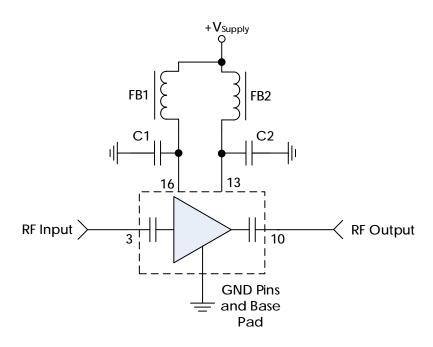






Typical Performance (continued)

(Vd = +5.0 V, Id = 126 mA)



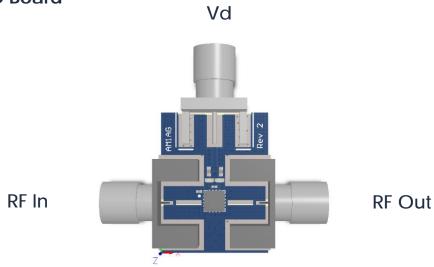
Typical Application

Recommended Component List (or equivalent):

Part	Value	Part Number	Manufacturer
C1, C2	0.1 µF	C1005X7R1H104K050BB	TDK
FB1, FB2	-	MMZ1005A222E	TDK

Notes:

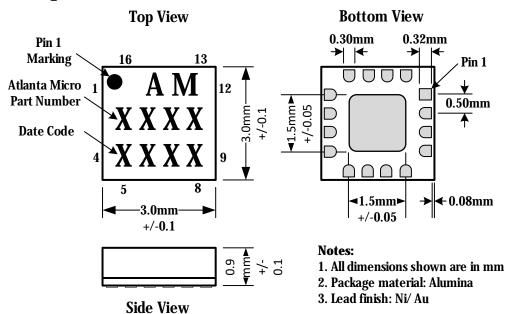
1. RF Input and Output pins are internally DC blocked.

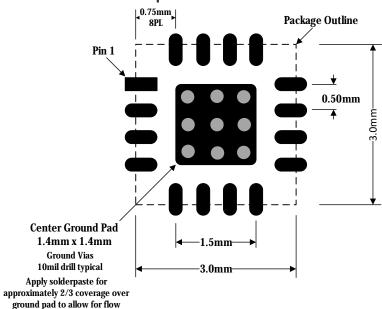

Part Ordering Details

Description	Part Number
3mm 16 Lead QFN	AM1082
AM1082 Evaluation Board	AM1082 Eval
AM1082 in 0.95" x 1.13" x 0.6" RF-Shielded Module with	AM1082-M
Integrated Bias Tee and Field Replaceable SMA Connectors	

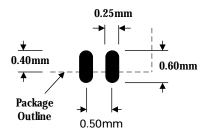
Related Parts

Part Number	Description			
AM1053	5 GHz	to	20 GHz	+3.3V Gain Block
AM1067	5 GHz	to	20 GHz	Bypassable Gain Block
AM1075	5 GHz	to	26.5 GHz	Bypassable Gain Block
AM1077	5 GHz	to	20 GHz	Bypassable Gain Block w/ Isolation State
AM1070	DC	to	18 GHz	+3.3V Broadband Gain Block
AM1071	DC	to	18 GHz	+5.0V Broadband Gain Block
AM1085	DC	to	6 GHz	+5.0V Gain Block
AM1090	DC	to	6 GHz	+5.0V or +8.0V Gain Block


Evaluation PC Board

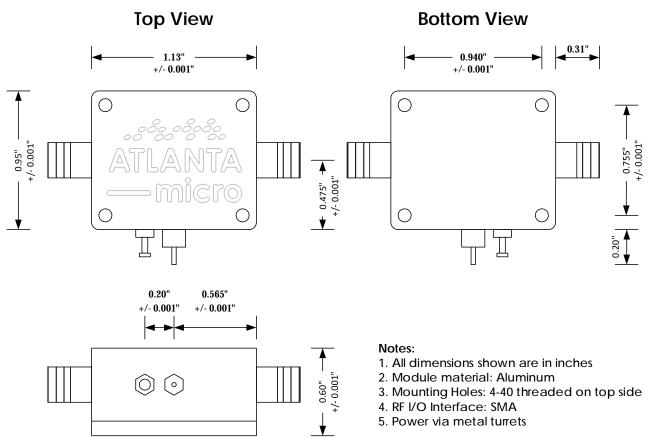


3mm 16 Lead QFN Details


Package Drawing

Recommended Footprint

Pad and Spacing Detail



Recommend 0.08mm soldermask oversize beyond pad outlines

RF Shielded Module Details

Front View

Component Compliance Information

RoHS: Atlanta Micro, Inc. hereby certifies that all products comply with the EC Directive 2011/65/EC on the Restriction of Hazardous Substances, commonly known as EU-RoHS 6 and 10. All products supplied by Atlanta Micro shall be compliant with the European Directive 2011/65/EC based on the following substance list.

Substance List	Allowable Maximum Concentration
Lead (Pb)	<1000 PPM (0.1% by weight)
Mercury (Hg)	<1000 PPM (0.1% by weight)
Cadmium (Cd)	<75 PPM (0.0075% by weight)
Hexavalent Chromium (CrVI)	<1000 PPM (0.1% by weight)
Polybrominated Biphenyls (PBB)	<1000 PPM (0.1% by weight)
Polybrominated Diphenyl ethers (PBDE)	<1000 PPM (0.1% by weight)
Decabromodiphenyl Deca BDE	<1000 PPM (0.1% by weight)
Bis (2-ethylheyl) Phthalate (DEHP)	<1000 PPM (0.1% by weight)
Butyl Benzyl Phthalate (BBP)	<1000 PPM (0.1% by weight)
Dibutyl Phthalate (DBP)	<1000 PPM (0.1% by weight)
Diisobutyl Phthalate (DIBP)	<1000 PPM (0.1% by weight)

REACH: Atlanta Micro, Inc. neither uses nor intentionally adds any of the substances considered to be a Substance of Very High Concern (SVHC) as defined by the EU Regulation (EC) No. 1907-2006 on Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH).

Conflict Materials: Atlanta Micro does not knowingly use materials that are sourced from the Democratic Republic of Congo (DRC) or any other known conflict regions. Atlanta Micro's supply chain is comprised of sources that are both environmentally and socially responsible. We periodically review this requirement with our vendors to ensure continued compliance.

Atlanta Micro takes its responsibility as a global partner seriously and will use due diligence within our supply chain to ensure all standards are met to the best of our knowledge.