mercury

Flexor 5973-317

8-channel 250 MHz A/D with DDCs 3U VPX board with Virtex-7 FPGA

Complete radar and software radio interface solution

- Radar and software radio receiver
- Communications receiver
- Analog signal interface for data recording
- Wideband data acquisition

- Remote monitoring
- Sensor interfaces

Model 5973-317 is a member of the Flexor® family of highperformance 3U VPX boards based on the Xilinx Virtex-7 FPGA. As a FlexorSet® integrated solution, the Model 3316 FMC is factory-installed on the 5973 FMC carrier. The required FPGA IP is installed and the board set is delivered ready for immediate use.

The delivered FlexorSet is a multichannel, high-speed data converter with programmable DDCs (Digital Downconverters) and is suitable for connection to the HF or IF ports of a communications or radar system. Its built-in data capture features offer an ideal turnkey solution as well as a platform for developing and deploying custom FPGA processing IP.

The 5973-317 includes eight A/Ds and four banks of memory. In addition to supporting PCIe Gen. 3 as a native interface, it includes optional copper and optical connections to the Virtex-7 FPGA for custom I/O.

FEATURES

- Supports Xilinx[®] Virtex[®]-7 VXT FPGA
- GateXpress[®] supports dynamic FPGA reconfiguration across PCIe
- Eight 250 MHz 16-bit A/Ds
- Eight multiband DDCs
- 4 GB of DDR3 SDRAM
- Sample clock synchronization to an external system reference
- PCI Express (Gen. 1, 2 & 3) interface up to x8
- User-configurable gigabit serial interface
- Optional optical Interface for backplane gigabit serial inter-board communication
- Optional LVDS connections to the Virtex-7 FPGA for custom I/O

THE FLEXOR ARCHITECTURE

Based on the proven design of the Mercury Onyx family of Virtex-7 products, the 5973 FMC carrier retains all the key features of that family. As a central foundation of the board architecture, the FPGA has access to all data and control paths of both the carrier board and the FMC module, enabling factoryinstalled functions that include data multiplexing, channel selection, data packing, gating, triggering and memory control.

When delivered as an assembled board set, the 5973-316 includes factory-installed applications ideally matched to the board's analog interfaces. The functions include eight A/D acquisition IP modules for simplifying data capture and data transfer.

Each of the eight acquisition IP modules contains IP modules for DDR3 SDRAM memories. A controller for all data clocking and synchronization functions, a test signal generator, and a PCIe interface complete the factory-installed functions and enable the 5973-316 to operate as a turnkey solution without the need to develop any FPGA IP.

EXTENDABLE IP DESIGN

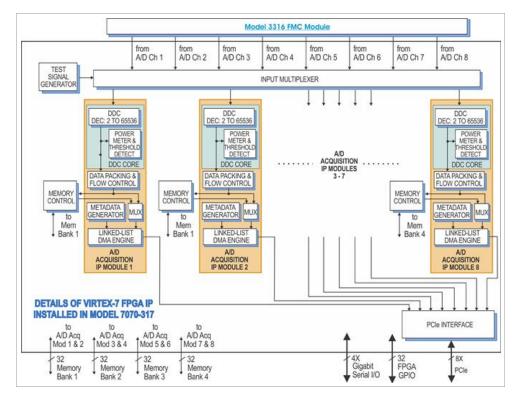
For applications that require specialized functions, users can install their own custom IP for data processing. The GateFlow FPGA Design Kits include all of the factory-installed modules as document source code. Developers can integrate their own IP with the factory-installed functions or use the GateFlow kit to completely replace the IP with their own.

XILINX VIRTEX-7 FPGA

The 5973-317 is populated with a VX690T FPGA. It features 3600 DSP48E1 slices and is ideal for modulation/demodulation, encoding/decoding, encryption/ decryption, and channelization of the signals between trans-mission and reception. A 4X connection between the FPGA and the VPX P1 connector supports gigabit serial protocols.

GATEXPRESS FOR FPGA CONFIGURATION

The Onyx architecture includes GateXpress[®], a sophisticated FPGA-PCIe configuration manager for loading and reloading the FPGA. At power up, GateXpress immediately presents a PCIe target for the host computer to discover, effectively giving the FPGA time to load from FLASH. This is especially important for larger FPGAs where the loading times can exceed the PCIe discovery window, typically 100 msec on most PCs.


The board's configuration FLASH can hold four FPGA images. Images can be factory-installed IP or custom IP created by the user, and programmed into the FLASH via JTAG using Xilinx iMPACT or through the board's PCIe interface. At power up the user can choose which image will load based on a hardware switch setting. Once booted, GateXpress allows the user three options for dynamically reconfiguring the FPGA with a new IP image:

- The first is the option to load an alternate image from FLASH through software control. The user selects the desired image and issues a reload command.
- The second option is for applications where the FPGA image must be loaded directly through the PCIe interface. This is important in security situations where there can be no latent user image left in nonvolatile memory when power is removed. In applications where the FPGA IP may need to change many times during the course of a mission, images can be stored on the host computer and loaded through PCIe as needed.
- The third option, typically used during development, allows the user to directly load the FPGA through JTAG using Xilinx iMPACT.

In all three FPGA loading scenarios, GateXpress handles the hardware negotiation simplifying and streamlining the loading task. In addition, GateXpress preserves the PCIe configuration space allowing dynamic FPGA reconfiguration without a host computer reset to rediscover the board. After the reload, the host simply continues to see the board with the expected device ID.

5973-317 BLOCK DIAGRAM

..... RF In RF RF RF XFORM RF RF RF XFORM RF RF A/D Sample Cik / eference Cik In O TIMING BUS GENERATOR Clock/Sync Bus 0. Gate / Trigger / Sync / PPS O Clock / Sync Gate / PPS Control ţ. 16 16 16 16 te 18 16 VCXO FMC CONNECTOR Model 3317 FMC Model 5973 FMC Carrier FMC CONNECTOR 160 TIOX **VIRTEX-7 FPGA** VX690T PGA PCle Gen. 3 x8 32 32 32 32 12X FPGA Config 4X Gigabit Serial I/O OPTICAL ANSCEIVER (Optional) FPGA FPGA LVDS PCIe Gigabit Serial I/O Gen. 3 x8 VPX-P2 (1/2) VITA 66.4 VPX BACKPLANE

A/D CONVERTERS

The board's analog interface accepts eight analog HF or IF inputs on front-panel connectors with transformer-coupling into four Texas Instruments ADS42LB69 Dual 250 MHz, 16-bit A/D converters.

A/D ACQUISITION IP MODULES

The 5973-317 features eight A/D Acquisition IP Modules for easily capturing and moving data. Each IP module can receive data from any of the eight A/Ds or a test signal generator.

Each IP module has an associated memory bank for buffering data in FIFO mode or for storing data in transient capture mode. All memory banks are supported with DMA engines for easily moving A/D data through the PCIe interface. These powerful linked-list DMA engines are capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing A/D channel ID, a sample-accurate time stamp and data length information. These actions simplify the host processor's job of identifying and executing on the data.

DDC IP CORES

Within each A/D Acquisition IP Module is a powerful DDC IP core. Because of the flexible input routing of the A/D Acquisition IP Modules, many different configurations can be achieved including one A/D driving all eight DDCs or each of the eight A/Ds driving its own DDC. Each DDC has an independent 32-bit tuning frequency setting that ranges from DC to $f_{\rm s'}$ where $f_{\rm s}$ is the A/D sampling frequency. Each DDC can have its own unique decimation setting, supporting as many as four different output bandwidths for the board.

Decimations can be programmed from 2 to 32,768 providing a wide range to satisfy most applications. The decimating filter for each DDC accepts a unique set of user-supplied 18-bit coefficients. The 80% default filters deliver an output bandwidth of $0.8^* f_{\rm s}/N$, where N is the decimation setting. The rejection of adjacent-band components within the 80% output bandwidth is better than 100 dB.

Each DDC delivers a complex output stream consisting of 24-bit I + 24-bit Q or 16-bit I + 16-bit Q samples at a rate of f_s /N. Each DDC core contains programmable I & Q phase and gain adjustments followed by a power meter that continuously measures the individual average power output. The time constant of the averaging interval for each meter is programmable up to 8 K samples. The power meters present average power measurements for each DDC core output in easy-to-read registers. In addition, each DDC core includes a threshold detector to automatically send an interrupt to the processor if the average power level of any DDC core falls below or exceeds a programmable threshold.

CLOCKING AND SYNCHRONIZATION

An internal timing bus provides all timing and synchronization required by the A/D converters. Included are a clock, sync and gate or trigger signals. An on-board clock generator can receive an external sample clock from the frontpanel coaxial connector. This clock can be used directly by the A/D section or divided by a built-in clock synthesizer circuit. In an alternate mode, the sample clock can be sourced from an on-board programmable VCX0 (Voltage-Controlled Crystal Oscillator). In this mode, the front-panel coaxial connector can be used to provide a 10 MHz reference clock for synchronizing the internal oscillator.

A front panel Gate/Trigger/PPS connector can receive an external timing signal allowing multiple boards to be synchronized to create larger multiboard systems.

PCI EXPRESS INTERFACE

The Model 5973-317 includes an industry-standard interface fully compliant with PCIe Gen. 1, 2 and 3 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the board.

MEMORY RESOURCES

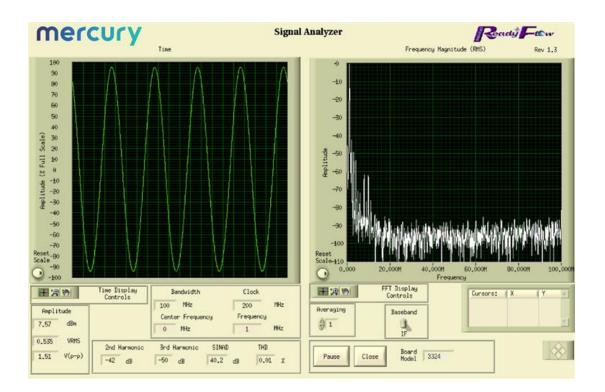
The 5973-317 architecture supports four independent DDR3 SDRAM memory banks. Each bank is 1 GB deep and is an integral part of the board's DMA capabilities, providing FIFO memory space for creating DMA packets.

READYFLOW

Mercury provides ReadyFlow[®] BSPs (Board Support Packages) for all Cobalt, Onyx, and Flexor products. Available for both Linux and Windows, these packages:

- Provide a path for quick start-up through application completion
- Allow programming at high, intermediate and low levels to meet various needs
- Are illustrated with numerous examples
- Include complete documentation and definitions of all functions
- Include library and example source code.

ReadyFlow BSPs contain C-language examples that can be used to demonstrate the capabilities of Cobalt, Onyx, and Flexor products. These programming examples will help you get an immediate start on writing your own application. They provide sample code that is known to work, giving you a means of verifying that your board set is operational.


COMMAND LINE INTERFACE

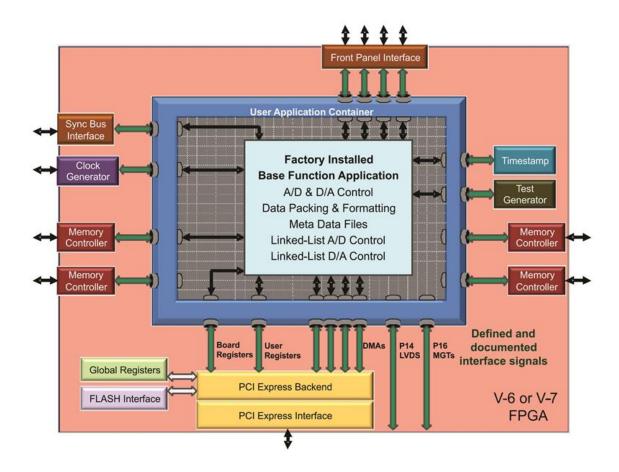
The Command Line Interface provides access to pre-compiled executable examples that operate the hardware right out of the box, without the need to write any code. Board-specific hardware operating arguments can be entered in the command line to control parameters: number of channels to enable, sample clock frequency, data transfer size, reference clock frequency, reference clock source, etc.

The Command Line Interface can be used to call an example application from within a larger user application to control the hardware, and parameter arguments are passed to the application for execution. Functions that control data acquisition automatically save captured data to a pre-named host file or are routed to the Signal Analyzer example function for display.

SIGNAL ANALYZER

When used with the Command Line Interface, the Signal Analyzer allows users to immediately start acquiring and displaying A/D data. A full-featured analysis tool, the Signal Analyzer displays data in time and frequency domains. Built-in measurement functions display 2nd and 3rd harmonics, THD, and SINAD. Interactive cursors allow users to mark data points and instantly calculate amplitude and frequency of displayed signals.

GATEFLOW


The GateFlow[®] FPGA Design Kit (FDK) allows the user to modify, replace and extend the standard installed functions in the FPGA to incorporate special modes of operation, new control structures, and specialized signal-processing algorithms.

The Cobalt (Virtex-6), Onyx (Virtex-7), and Flexor (Virtex-7) architectures configure the FPGA with standard factory-supplied interfaces including memory controllers, DMA engines, A/D and D/A interfaces, timing and synchronization structures, triggering and gating logic, time stamping and header tagging, data formatting engines, and the PCIe interface. These resources are connected to the User Application Container using well-defined ports that present easy-to-use data and control signals, effectively abstracting the lower-level details of the hardware.

The User Application Container

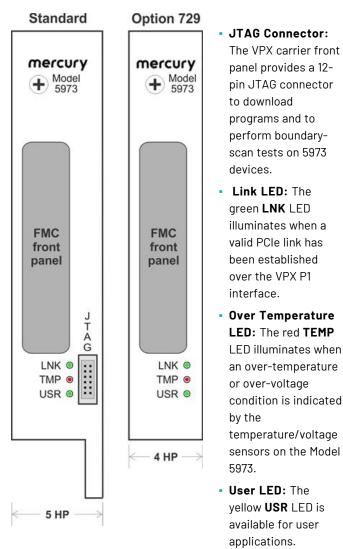
Shown below is the FPGA block diagram of a typical Cobalt, Onyx or Flexor module. The User Application Container holds a collection of different installed IP modules connected to the various interfaces through the standard ports surrounding the container. The specific IP modules for each product are described in further detail in the datasheet of that product.

The GateFlow FDK provides a complete Xilinx's ISE or Vivado project folder containing all the files necessary for the FPGA developer to recompile the entire project with or without any required changes. VHDL source code for each IP module provides excellent examples of how the IP modules work, how they might be modified, and how they might be replaced with custom IP to implement a specific function.

FRONT PANEL CONNECTIONS

The FMC front panel includes ten SSMC coaxial connectors for input/output of timing and analog signals. The front panel also includes four LEDs.

- Analog Input Connectors: Eight coaxial connectors, labeled IN 1, 2, 3, 4, 5, 6, 7, and 8, one for each ADC input channel. IN 1 and 2 are input to the first ADS421.B69 and IN 3 and 4 are input to the second ADS421.B69. to the ADC32RF45.
- ADC Overload LED: The red OV overload LED indicates an overrange condition in one or more of the eight ADC input channels.
- Clock LED: The green CLK LED illuminates when a valid sample clock signal is detected. If the LED is not illuminated, no clock has been detected and no data from the input stream can be processed.
- Clock Input Connector: One SSMC connector, labeled CLK for the input of an external sample clock.


User LED: The green **USR** LED is available for user applications.

Over Temperature LED: The red **TMP** LED illuminates when an over-temperature or over-voltage condition is indicated by any of the temperature/voltage sensors on the PCB.

 Trigger Input Connector: One SSMC coaxial connector labeled TRG for input of an external trigger.

FRONT PANEL CONNECTIONS

The 5973 3U VPX carrier front panel houses the front panel of the FMC module installed on the carrier. The VPX carrier front panel includes three LED indicators below the FMC panel.

Note: If your 5973 is ordered with Option 763 for mounting in a conduction-cooled VPX chassis, it would have a conduction-cooled VPX Carrier Front Panel.

SPECIFICATIONS

Front Panel Analog Signal Inputs

Input Type: Transformer-coupled, front panel connectors

Transformer Type: Coil Craft WBC4-6TLB

Full Scale Input: +4 dBm into 50 ohms

3 dB Passband: 300 kHz to 700 MHz

A/D Converters

Type: Texas Instruments ADS42LB69

Sampling Rate: 10 MHz to 250 MHz

Resolution: 16 bits

Sample Clock Source

On-board clock synthesizer

Clock Synthesizer

Clock Source: Selectable from on-board programmable VCXO (10 to 810 MHz) or front panel external clock

Synchronization: VCXO can be phase-locked to an external 4 to 180 MHz PLL system reference, typically 10 MHz

Clock Dividers: External clock or VCXO can be divided by 1, 2, 4, 8, or 16 $\,$

External Clock

Type: Front panel connector, sine wave, 0 to +10 dBm, ACcoupled, 50 ohms, accepts 10 to 800 MHz divider input clock or PLL system reference

External Trigger Input

Type: Front panel connector

Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Array

- Standard: Xilinx Virtex-7 XC7VX330T-2
- Option -076: Xilinx Virtex-7 XC7VX690T-2

Custom FPGA I/O

4X gigabit links between the FPGA and the VPX P1 connector to support serial protocols.

Parallel (Option -104): 16 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O $\,$

Optical (Option -110): VITA-66.4, 12X duplex lanes

Memory

Type: DDR3 SDRAM

Size: Four banks, 1 GB each

Speed: 800 MHz (1600 MHz DDR)

PCI-Express Interface

PCI Express Bus: Gen. 1, 2 or 3: x4 or x8

Environmental

- Standard: L0 (air-cooled)
- Operating Temp: 0° to 50° C
- Storage Temp: -20° to 90° C
- Relative Humidity: 0 to 95%, non-condensing
- Option -702: L2 (air-cooled)
- Operating Temp: -20° to 65° C
- Storage Temp: -40° to 100° C
- Relative Humidity: 0 to 95%, non-condensing
- Option -763: L3 (conduction-cooled)
- Operating Temp: -40° to 70° C
- Storage Temp: -50° to 100° C
- Relative Humidity: 0 to 95%, non-condensing

Physical

Dimensions: 3U VPX

- Depth: 100 mm (3.937 in)
- Height: 170.6 mm (6.717 in)

Open VPX Compatibility

The Model 5973-317 is compatible with the following module profile, as defined by the VITA 65 Open-VPX Specification: SLT3-PAY-2F1F2U1E-14.6.6-1.

ORDERING INFORMATION

Model	Description
5973-317	8-Channel 250 MHz A/D with DDCs and Virtex-7 FPGA - 3U VPX

Options:				
-104	LVDS FPGA I/O to VPX P2			
-110	VITA-66.4 12X optical interface			
-702	Air-cooled, Level 2			
-763	Conduction-cooled, Level 3			
Contact Mercury for compatible option combinations and complete				

specifications of rugged and conduction-cooled versions. Options may change, so be sure to contact Mercury for the latest information.

FLEXORSET MODELS

This chart shows all available FlexorSets. Click on model numbers for more information.

Form Factor	Software/FPGA Tools	Carrier Model	FMC Model	FlexorSet Model	Description
3U VPX	Virtex-7 ReadyFlow BSP GateFlow FDK Vivado	5973	3312	5973-312	4-Channel 250 MHz A/D & 2-Channel 800 MHz D/A
				5973-313	4-Channel 250 MHz A/D & 2-Channel 800 MHz D/A with 4 multiband DDCs & interpolation filters
			3316	5973-316	8-Channel 250 MHz 16-bit A/D
				5973-317	8-Channel 250 MHz 16-bit A/D with 8 multiband DDCs
			3320	5973-320	2-Channel 3 GHz A/D & 2-Channel 2.8 GHz D/A
			3324	5973-324	4-Channel 500 MHz A/D & 4-Channel 2 GHz D/A
	KintexUltraScale Navigator BSP Navigator FDK Vivado	5983*	3312	5983-313*	4-Channel 250 MHz A/D & 2-Channel 800 MHz D/A with 4 multiband DDCs & interpolation filters
			3316	5983-317*	8-Channel 250 MHz 16-bit A/D with 8 multiband DDCs
			3320	5983-320*	2-Channel 3 GHz A/D & 2-Channel 2.8 GHz D/A
			3324	5983-324*	4-Channel 500 MHz A/D & 4-Channel 2 GHz D/A
PCIe	Virtex-7 ReadyFlow BSP GateFlow FDK Vivado	7070	3312	7070-312	4-Channel 250 MHz A/D & 2-Channel 800 MHz D/A
				7070-313	4-Channel 250 MHz A/D & 2-Channel 800 MHz D/A with 4 multiband DDCs & interpolation filters
			3316	7070-316	8-Channel 250 MHz 16-bit A/D
				7070-317	8-Channel 250 MHz 16-bit A/D with 8 multiband DDCs
			3320	7070-320	2-Channel 3 GHz A/D & 2-Channel 2.8 GHz D/A
			3324	7070-324	4-Channel 500 MHz A/D & 4-Channel 2 GHz D/A

*There is a 5983A version of this product. For differences, see below.

Model 5983	Model 5983A
Flash Memory - 1 Gbit of FLASH Memory	Flash Memory -2 Gbit of BPI FLASH Memory
Optical I/O (Option 110) - VITA 66.4 - Up to 12 duplex optical lanes are available on a VITA 66.4 connector.	Optical I/O (Option 110) - VITA 67.3D - Provides 12 duplex lanes @ 10 Gb/sec through the lower half of VPX P2 (VPX P2B).
With the installation of a serial protocol, the VITA 66.4 interface enables a high-bandwidth connection between 5983s mounted in the same chassis or over extended distances.	With the installation of a serial protocol, the VITA 67.3D interface enables gigabit communications between boards and chassis, independent of the PCIe interface.
	Custom Analog I/O (Option 113) - VITA 67.3 - VITA 67.3 provides 10 coax connections through the lower half of VPX P2.

ACCESSORY PRODUCTS

Model	Description
2171	Cable kit: SSMC to SMA
5292	High-speed synchronizer and distribution board - 3U VPX model
9192	Rackmount high-speed system synchronizer unit

DEVELOPMENT SYSTEMS

Mercury offers development systems for Flexor products. They come with all pre-tested software and hardware ready for immediate operation. These systems are intended to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Flexor boards. Please contact Mercury to configure a system that matches your requirements.

LIFETIME SUPPORT FOR FLEXOR PRODUCTS

Mercury offers worldwide customers shorter development time, reliable, rugged solutions for a variety of environments, reduced costs, and mature software development tools. We offer free lifetime support from our engineering staff, which customers can depend on through phone and email, as well as software updates. Take advantage of our 40 years of experience in delivering high-performance radar, communications, SIGINT, EW, and data acquisition MIL-Aero solutions worldwide.

mercury

Corporate Headquarters 50 Minuteman Road

Andover, MA 01810 USA +1 978.967.1401 tel +1 866.627.6951 tel +1 978.256.3599 fax

International Headquarters Mercury International

Avenue Eugène-Lance, 38 PO Box 584 CH-1212 Grand-Lancy 1 Geneva, Switzerland +41 22 884 5100 tel Learn more Visit: mrcy.com/go/MP5973-317 For technical details, contact: mrcy.com/CF5973-317

The Mercury Systems logo and the following are trademarks or registered trademarks of Mercury Systems, Inc.: Mercury Systems, Innovation That Matters, Cobalt, Flexor, Flexor, GateFlow, ReadyFlow, Onyx, and Navigator. Other marks used herein may be trademarks or registered trademarks of their respective holders. Mercury believes this information is accurate as of its publication date and is not responsible for any inadvertent errors. The information contained herein is subject to change without notice.

© 2022 Mercury Systems, Inc. 1-0-111422-DS-F5973-317