**Ensemble 3000 Series OpenVPX SWaP-Constrained EO/IR Application**

**Mission**
Detect, track, and designate objects for Special Operations using unmanned EO/IR system.

**Problem**
Platforms are getting smaller, while the volume of incoming sensor data is growing exponentially as EO/IR technology continues to advance. Deployment of the processing solution close to the sensor requires a high degree of ruggedization. As multiple I/O streams, data-rate increases, and system requirements to decrease size, weight, and power (SWaP) become manifest, the necessary system capabilities are difficult to achieve.

**Solution**
The Ensemble™ 3000 Series provides dense processing solutions that have been developed in accordance with OpenVPX™ design principles. They have been specifically designed for SWaP-constrained applications, with direct processor-to-processor connectivity and upgrade options for bandwidth growth. Multiple physical planes for data, control, and system management provide a robust, scalable system solution.

Ensemble 3000 Series OpenVPX modules are available at various levels of ruggedization, including air-cooled and conduction-cooled formats. These products can be flexibly combined and configured to deliver a complete, standards-driven, scalable solution that can handle the most challenging SWaP-constraint EO/IR applications.

**Components**
- **Ensemble 3000 Series OpenVPX HCD3200 Module**
  - Quantity: 1
- **Ensemble 3000 Series OpenVPX SCH3000 Module**
  - Quantity: 1
- **Ensemble 3000 Series OpenVPX FCN3110 Module**
  - Quantity: 4
Some of Mercury's products are subject to the jurisdiction of the U. S. International Traffic in Arms Regulations (ITAR). Please contact your Mercury sales representative for more information.

Ensemble and Challenges Drive Innovation are trademarks of Mercury Computer Systems, Inc. OpenVPX is a trademark of VITA. Other products mentioned may be trademarks or registered trademarks of their respective holders. Mercury Computer Systems, Inc. believes this information is accurate as of its publication date and is not responsible for any inadvertent errors. The information contained herein is subject to change without notice.

Copyright © 2009 Mercury Computer Systems, Inc.