2Gb LPDDR (2 x 32Mx32)

MS46H64M32L2SB-XX

*PRELIMINARY

FEATURES

- Package:
 - 152 Plastic Ball Grid Array (PBGA), 14 x 14 mm
 - 0.65 mm pitch
 - 1.28 mm max thickness
- Micron[®] LPDDR components
- RoHS-compliant, "green" package
- Space-saving multichip package/package-on-package combination
- V_{DD}/V_{DDQ} Low-voltage operation (1.8V)
- Commercial and industrial temperature ranges
- Same footprint as Micron[®] MS46H64M32L2CG/KZ
- Bidirectional data strobe per byte of data (DQS)
- Internal, pipelined double data rate (DDR) architecture; two data accesses per clock cycle
- Differential clock inputs (CK and CK#)
- Commands entered on each positive CK edge
- DQS edge-aligned with data for READs; center-aligned with data for WRITEs
- 4 internal banks for concurrent operation
- Data masks (DM) for masking write data—one mask per byte
- Programmable burst lengths (BL): 2, 4, 8, or 16
- Concurrent auto precharge option is supported
- Auto refresh and self refresh modes
- 1.8V LVCMOS-compatible inputs
- Partial-array self refresh (PASR)
- Deep power-down (DPD)
- Status read register (SRR)
- Selectable output drive strength (DS)
- Clock stop capability
- 64ms refresh

GENERAL DESCRIPTION

Microsemi MS46H64M32L2SB package-on-package (PoP) MCP product combines two Mobile LPDRAM devices in a single MCP. This product targets mobile applications with low-power, high-performance, and minimal package-footprint design requirements.

Each 1Gb Mobile low-power DDR SDRAM is a high-speed CMOS, dynamic random-access memory. It is internally configured as a quad-bank DRAM. Each of the x32's 268M-bit banks is organized as 8,192 rows by 1,024 columns by 32 bits.

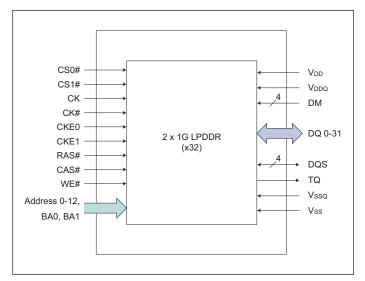
NOTES:

- Complete functionality is described throughout the document; any page or diagram may have been simplified to convey a topic and may not be inclusive of all requirements.
- 2. Any specific requirement takes precedence over a general statement.
- * This product is under development, is not qualified or characterized and is subject to change without notice.

Micron® is a registered trademark of Micron Technology, Inc.

TABLE 1 - CONFIGURATION ADDRESSING - 2 x 1Gb

A cold the object	020 M20
Architecture	2 x 32 Meg x 32
Configuration	8 Meg x 32 x 4 banks x 2 die
Refresh count	8K
Row addressing	8K A[12:0]
Column addressing	1K A[9:0]


FIGURE 1 – PIN CONFIGURATION

TOP VIEW

,	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	
Α	NC	NC	VDDQ	(DM1)	(DQ13)	DQ15	Vssq	(DQ10)	DQ12	(DQ16)	DQ19	СК	Vss	DM2	VDDQ	(DQ21)	(DQ20)	DM3	DQS3	NC	NC	А
В	NC	NC	DQ6	DQ7	V_{DDQ}	DQ9	DQ14	(DQS1)	(DQ11)	DQ8	DQ17	(DQ18)	CK#	Vssq	DQS2	(V_{DD})	(DQ23)	DQ22	DQ28	NC	NC	В
С	Vssq	(DQS0)																		DQ24	DQ26	С
D	DQ3	DQ5																		DQ25	DQ29	D
Е	(DQ0)	DQ1																		DQ27	DQ31)	Е
F	Vssq	(V _{DDQ})																		V _{SSQ}	V _{DDQ}	F
G	(DQ4)	(DQ2)																		(A0)	(DQ30)	G
Н	(DM0)	(vss)																		(Vss)	(V _{DD})	Н
J	(V _{DD})	(NC)																		(A2)	(A3)	J
K	(NC)	(NC)																		(A1)	(A9)	K
L	(NC)	(NC)																		(V _{DDQ})	(V _{SSQ})	L
М	(NC)	(V _{SS})																		(A7)	(A6)	M
N	(NC)	DNU																		(A8)	(A11)	N
Р	(NC)	(NC)																		(V _{SS})	(V _{DD})	Р
R	(NC)	(Vss)																		(A5)	(A12)	R
Т	(NC)	DNU																		(CS1#)	CS0#	Т
U	(NC)	(NC)																		CAS#)	(A4)	U
V	(NC)	(NC)																		(BA1)	(RAS#)	V
W	(NC)	(NC)																		(V _{SSQ})	(V _{DDQ})	W
Υ	(NC)	(NC)	(NC)	(NC)	(NC)	(Vss)	(DNU)	(NC)	(NC)	(NC)	(V _{SS})	(RFU)	(CKE1)	(V _{DD})	(CKE0)	(A10)	(V _{SS})	(WE#)	(V _{SSQ})	(NC)	(NC)	Υ
AA	(NC)	(NC)	(NC)	(NC)	(NC)	(DNU)	(V _{SS})	(NC)	(NC)	(NC)	(V _{DD})	(TQ)	(V _{SS})	(V _{DDQ})	(RFU)	(V _{SSQ})	(V _{DD})	(BA0)	(V _{DDQ})	(NC)	(NC)	AA
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	

NOTE: Ball AA15 is reserved for A13 and ball Y12 is reserved for A14 for future densities

FIGURE 2 - FUNCTIONAL BLOCK DIAGRAM

NOTE:

Throughout this data sheet, various figures and text refer to DQs as "DQ." DQ should be
interpreted as any and all DQ collectively, unless specifically stated otherwise. The x32 LPDDR
is divided into 4 bytes. For DQ[7:0], DM refers to DM0 and DQS refers to DQS0. For DQ[15:8],
DM refers to DM1 and DQS refers to DQS1. For DQ[23:16], DM refers to DM2 and DQS refers
to DQS2. For DQ[31:24], DM refers to DM3 and DQS refers to DQS3.

TABLE 2 - BALL DESCRIPTIONS

Symbol	Туре	Description
A[12:0]	Input	Address inputs: Specifies the row or column address. Also used to load the mode registers. The maximum LPDDR address is determined by density and configuration.
BA0, BA1	Input	Bank address inputs: Specifies one of the 4 banks.
CAS#	Input	Column select: Specifies which command to execute.
CK, CK#	Input	CK is the system clock. CK and CK# are differential clock inputs. All address and control signals are sampled and referenced on the crossing of the rising edge of CK with the falling edge of CK#.
CKE0, CKE1	Input	Clock enable: CKE0, CKE1
CS0#, CS1#	Input	Chip select: CS0#, CS1#
DM[3:0]	Input	Data mask: Determines which bytes are written during WRITE operations.
RAS#	Input	Row select: Specifies the command to execute.
WE#	Input	Write enable: Specifies the command to execute.
DQ[31:0]	Input/output	Data bus: Data inputs/outputs.
DQS[3:0]	Input/output	Data strobe: Coordinates READ/WRITE transfers of data; one DQS per DQ byte.
TQ	Output	Temperature sensor output: TQ HIGH when LPDDR TJ exceeds 85°C.
V_{DD}	Supply	V _{DD} : Core power supply.
V _{DDQ}	Supply	V _{DDQ} : I/O power supply.
Vssq	Supply	Vssq: I/O ground.
Vss	Supply	Vss: Core ground.
DNU	_	Do not use
NC	_	No connect: Not internally connected.
RFU ¹	_	Reserved for future use.

Note: 1. Balls marked RFU may or may not be connected internally. These balls should not be used. Contact factory for details.

ELECTRICAL SPECIFICATIONS

Stresses greater than those listed may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

TABLE 3 – ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Min	Max	Unit	Notes
V _{DD} /V _{DDQ} supply voltage relative to V _{SS} /V _{SSQ}	V _{DD} /V _{DDQ}	-1.0	2.4	V	1
Voltage on any pin relative to Vss	V _{IN}	-0.5	2.4 or (V _{DDQ} + 0.3V), whichever is less	V	1
Storage temperature range	_	-55	+150	°C	

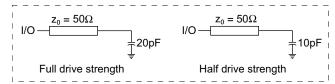
NOTE: 1. V_{DD} and V_{DDQ} must be within 300mV of each other at all times. V_{DDQ} must not exceed V_{DD}.

TABLE 4 - RECOMMENDED OPERATING CONDITIONS

Parameters	Symbol	Min	Тур	Max	Unit	Notes
Supply voltage	V_{DD}	1.70	1.80	1.95	V	6, 7
I/O supply voltage	V _{DDQ}	1.70	1.80	1.95	V	6, 7
Operating temperature range (Industrial)	_	-40	_	+85	°C	
Operating temperature range (Commercial)	_	0	_	+70	°C	

TABLE 5 - AC/DC ELECTRICAL CHARACTERISTICS AND OPERATING CONDITIONS

Notes 1-5 apply to all parameters/conditions in this table


Parameter/Condition	Symbol	Min	Max	Unit	Notes
Address and command inputs	·				
Input voltage high	V _{IH}	0.8 × V _{DDQ}	V _{DDQ} + 0.3	V	8, 9
Input voltage low	V _{IL}	-0.3	0.2 × V _{DDQ}	V	8, 9
Clock inputs (CK, CK#)	·			•	
DC input voltage	Vin	-0.3	V _{DDQ} + 0.3	V	10
DC input differential voltage	V _{ID(DC)}	0.4 × V _{DDQ}	V _{DDQ} + 0.6	V	10, 11
AC input differential voltage	V _{ID(AC)}	0.6 × V _{DDQ}	V _{DDQ} + 0.6	V	10, 11
AC differential crossing voltage	V _{IX}	0.4 × V _{DDQ}	0.6 × V _{DDQ}	V	10, 12
Data inputs					
DC input high voltage	V _{IH(DC)}	0.7 × V _{DDQ}	V _{DDQ} + 0.3	V	8, 9, 13
DC input low voltage	V _{IL(DC)}	-0.3	0.3 × V _{DDQ}	V	8, 9, 13
AC input high voltage	VIH(AC)	0.8 × V _{DDQ}	V _{DDQ} + 0.3	V	8, 9, 13
AC input low voltage	VIL(AC)	-0.3	0.2 × V _{DDQ}	V	8, 9, 13
Data outputs					
DC output high voltage: Logic 1 (I _{OH} = -0.1mA)	Voh	0.9 × V _{DDQ}	_	V	
DC output low voltage: Logic 0 (IoL = 0.1mA)	VoL	_	0.1 × V _{DDQ}	V	
Leakage current	·				
Input leakage current Any input $0V \le V_{IN} \le V_{DD}$ (All other pins not under test = $0V$)	l ₁	-2	2	μА	
Output leakage current (DQ are disabled; $0V \le V_{OUT} \le V_{DDQ}$)	loz	-3	3	μА	

Notes on next page

ELECTRICAL SPECIFICATIONS (cont'd)

NOTES:

- 1. All voltages referenced to Vss.
- 2. All parameters assume proper device initialization.
- Tests for AC timing, I_{CC}, and electrical AC and DC characteristics may be conducted at nominal supply voltage levels, but the related specifications and device operation are guaranteed for the full voltage range specified.
- 4. Outputs measured with equivalent load; transmission line delay is assumed to be very small:

- Timing and I_{DD} tests may use a V_{IL}-to-V_{IH} swing of up to 1.5V in the test environment, but input timing is still referenced to V_{DDQ/2} (or to the crossing point for CK/CK#). The output timing reference voltage level is V_{DDQ/2}.
- Any positive glitch must be less than one-third of the clock cycle and not more than +200mV or 2.0V, whichever is less. Any negative glitch must be less than one-third of the clock cycle and not exceed either –150mV or +1.6V, whichever is more positive.

- 7. V_{DD} and V_{DDQ} must track each other and V_{DDQ} must be less than or equal to V_{DD} .
- 8. To maintain a valid level, the transitioning edge of the input must:
 - Sustain a constant slew rate from the current AC level through to the target AC level, V_{IL(AC)} or V_{IH(AC)}.
 - 8b. Reach at least the target AC level.
 - After the AC target level is reached, continue to maintain at least the target DC level, V_{IL(DC)} or V_{IH(DC)}.
- V_{IH} overshoot: V_{IHmax} = V_{DDQ} + 1.0V for a pulse width ≤3ns and the pulse width cannot be greater than one-third of the cycle rate. V_{IL} undershoot: V_{ILmin} = −1.0V for a pulse width ≤3ns and the pulse width cannot be greater than one-third of the cycle rate.
- 10. CK and CK# input slew rate must be ≥1 V/ns (2 V/ns if measured differentially).
- 11. VID is the magnitude of the difference between the input level on CK and the input level on CK#.
- The value of V_{IX} is expected to equal V_{DDQ/2} of the transmitting device and must track variations in the DC level of the same.
- DQ and DM input slew rates must not deviate from DQS by more than 10%. 50ps must be added to t_{DS} and t_{DH} for each 100 mV/ns reduction in slew rate. If slew rate exceeds 4 V/ns, functionality is uncertain.

TABLE 6 – CAPACITANCE (X32)

Note 1 applies to all the parameters in this table

Parameter	Symbol	Min	Max	Unit	Notes
Input capacitance: CK, CK#	Сск	TBD	TBD	pF	
Delta input capacitance: CK, CK#	Срск	TBD	TBD	pF	2
Input capacitance: command and address	Cı	TBD	TBD	pF	
Delta input capacitance: command and address	C _{DI}	TBD	TBD	pF	2
Input/output capacitance: DQ, DQS, DM	C _{IO}	TBD	TBD	pF	
Delta input/output capacitance: DQ, DQS, DM	C _{DIO}	TBD	TBD	pF	3

NOTES:

- 1. This parameter is guaranteed by design, not tested.
- 2. The input capacitance per pin group will not differ by more than this maximum amount for any given device.
- 3. The I/O capacitance per DQS and DQ byte/group will not differ by more than this maximum amount for any given device.

ELECTRICAL SPECIFICATIONS - IDD PARAMETERS

TABLE 7 - IDD SPECIFICATIONS AND CONDITIONS

Notes 1–5 apply to all the parameters/conditions in this table

				Ma	1X**			
Parameter/Condition		Symbol	-5*	-54*	-6	-75	Unit	Notes
Operating 1 bank active precharge current: tRc = tRc (MIN); tcK = tcK (MIN); CKE HIGH between valid commands; Address inputs are switching every 2 clock c inputs are stable		I _{DD0}	110	105	100	70	mA	6
Precharge power-down standby current: All banks idle; CKE is LOW; CS is HIGH; tck = tck (MIN) Address and control inputs are switching; Data bus inputs are stable			600	600	600	600	μA	7, 8
Precharge power-down standby current: Clock stopped; All banks idle; CKE HIGH, CK = LOW, CK# = HIGH; Address and control inputs are switching; Da stable		I _{DD2PS}	600	600	600	600	μА	7
Precharge nonpower-down standby current: All banks idle; CKE = HIGH; CS $t_{CK} = t_{CK}$ (MIN); Address and control inputs are switching; Data bus inputs are s		I _{DD2N}	18	17	15	12	mA	9
Precharge nonpower-down standby current: Clock stopped; All banks idle; C CS = HIGH; CK = LOW, CK# = HIGH; Address and control inputs are switchin are stable		I _{DD2NS}	14	13	8	8	mA	9
Active power-down standby current: 1 bank active; CKE = LOW; CS = HIGH Address and control inputs are switching; Data bus inputs are stable	; $t_{CK} = t_{CK (MIN)}$;	I _{DD3P}	3.6	3.6	3.6	3.6	mA	8
Active power-down standby current: Clock stopped; 1 bank active; CKE = LC CK = LOW; CK# = HIGH; Address and control inputs are switching; Data bus		I _{DD3PS}	3.6	3.6	3.6	3.6	mA	
Active nonpower-down standby: 1 bank active; CKE = HIGH; CS = HIGH; to Address and control inputs are switching; Data bus inputs are stable	C = tck (MIN);	I _{DD3N}	20	19	18	16	mA	6
Active nonpower-down standby: Clock stopped; 1 bank active; CKE = HIGH; CK = LOW; CK# = HIGH; Address and control inputs are switching; Data bus		I _{DD3NS}	16	15	14	12	mA	6
Operating burst read: 1 bank active; BL = 4; CL = 3; tck = tck (MIN); Continuou lout = 0mA; Address inputs are switching every 2 clock cycles; 50% data char		I _{DD4R}	150	145	140	120	mA	6
Operating burst write: One bank active; BL = 4; tck = tck (MIN); Continuous WRITE bursts; Address inputs are switching; 50% data changing each burst		I _{DD4W}	150	145	140	120	mA	6
Auto refresh: Burst refresh; CKE = HIGH; Address and control inputs are	t _{RFC} = 138ns	I _{DD5}	140	140	140	140	mA	10
switching; Data bus inputs are stable		I _{DD5A}	15	15	15	14	mA	10, 11
Typical deep power-down current at 25°C: Address and control pins are stable	le; Data bus inputs	I _{DD8}	10	10	10	10	μА	7, 13

^{*} Optional speed grades – contact factory for availability.

Notes on next page

^{**} Max current of 1 device – the 2nd device current in non-operating mode to be added for total MCP current.

ELECTRICAL SPECIFICATIONS – IDD PARAMETERS (cont'd)

TABLE 8 - IDD6 SPECIFICATIONS AND CONDITIONS

Notes 1-5, 7, and 12 apply to all the parameters/conditions in this table

Parameter/Condition		Symbol	Standard	Units
Self refresh:	Full array, 85°C	I _{DD6}	1200	μΑ
CKE = LOW; $t_{CK} = t_{CK (MIN)}$; Address and control inputs are stable; Data bus inputs are stable	Full array, 45°C		750	μΑ
Data bus imputs are stable	1/2 array, 85°C		900	μΑ
	1/2 array, 45°C		730	μΑ
	1/4 array, 85°C		750	μΑ
	1/4 array, 45°C		680	μΑ
	1/8 array, 85°C		750	μΑ
	1/8 array, 45°C		620	μΑ
	1/16 array, 85°C		700	μΑ
	1/16 array, 45°C		540	μΑ

NOTES:

- 1. All voltages referenced to VSS.
- Tests for I_{DD} characteristics may be conducted at nominal supply voltage levels, but the related specifications and device operation are guaranteed for the full voltage range specified.
- Timing and IDD tests may use a VIL-to-VIH swing of up to 1.5V in the test environment, but input timing is still referenced to VDDQ/2 (or to the crossing point for CK/CK#). The output timing reference voltage level is VDDQ/2.
- I_{DD} is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time with the outputs open.
- I_{DD} specifications are tested after the device is properly initialized and values are averaged at the defined cycle rate.
- 6. MIN (trc or trac) for lob measurements is the smallest multiple of tck that meets the minimum absolute value for the respective parameter. trasmax for lob measurements is the largest multiple of tck that meets the maximum absolute value for tras.
- Measurement is taken 500ms after entering into this operating mode to provide settling time for the tester
- 8. V_{DD} must not vary more than 4% if CKE is not active while any bank is active.
- 9. IDD2N specifies DQ, DQS, and DM to be driven to a valid high or low logic level.
- CKE must be active (HIGH) during the entire time a REFRESH command is executed. From the
 time the AUTO REFRESH command is registered, CKE must be active at each rising clock edge
 until terc later.
- This limit is a nominal value and does not result in a fail. CKE is HIGH during REFRESH command period (trac (MIN)) else CKE is LOW (for example, during standby).
- Values for IDD6 85°C are guaranteed for the entire temperature range. All other IDD6 values are estimated.
- 13. Typical values at 25°C, not a maximum value.

ELECTRICAL SPECIFICATIONS – AC OPERATING CONDITIONS

TABLE 9 - ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

Notes 1–9 apply to all the parameters in this table; $V_{DD}/V_{DDQ} = 1.70-1.95V$

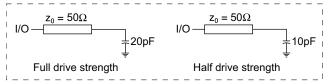
			-!	5*	-5	i4*	-	6	-75			
Parameter		Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Access window of DQ from CK/CK#	CL = 3	+	2.0	5.0	2.0	5.0	2.0	5.5	2.0	6.0	ns	
Access window of DQ from CNCN#	CL = 2	tac	2.0	6.5	2.0	6.5	2.0	6.5	2.0	6.5	115	
Clock cycle time	CL = 3	tou	5.0	_	5.4	-	6	-	7.5	-	ne	10
Clock Cycle time	CL = 2	tck	12	_	12	-	12	-	12	-	ns	10
CK high-level width		tсн	0.45	0.55	0.45	0.55	0.45	0.55	0.45	0.55	tск	
CK low-level width		tcL	0.45	0.55	0.45	0.55	0.45	0.55	0.45	0.55	tск	
CKE minimum pulse width (high and low)		tcke	1	_	1	-	1	-	1	-	tск	11
Auto precharge write recovery + precharge time		tdal	_	_	_	_	_	_	_	_	_	12
DQ and DM input hold time relative to DQS (fast slew rate)	t _{DHf}	0.6	_	0.6	_	0.6	-	0.8	-	ns	13, 14, 15
DQ and DM input hold time relative to DQS (slow slew rate	e)	t _{DHs}	0.7	-	0.7	-	0.7	-	0.9	-	ns	
DQ and DM input setup time relative to DQS (fast slew rat	e)	tosf	0.6	_	0.6	_	0.6	_	0.8	_	ns	13, 14, 15
DQ and DM input setup time relative to DQS (slow slew ra	te)	t _{DSs}	0.7	-	0.7	-	0.7	-	0.9	_	ns	
DQ and DM input pulse width (for each input)		t _{DIPW}	1.8	-	1.9	-	2.1	-	1.8	_	ns	16
A	CL = 3		2.0	5.0	2.0	5.0	2.0	5.5	2.0	6.0	ns	
Access window of DQS from CK/CK#	CL = 2	t t t t t t t t t t t t t t t t t t t	2.0	6.5	2.0	6.5	2.0	6.5	2.0	6.5	ns	
DQS input high pulse width		tдаян	0.4	0.6	0.4	0.6	0.4	0.6	0.4	0.6	tск	
DQS input low pulse width		togsl	0.4	0.6	0.4	0.6	0.4	0.6	0.4	0.6	tск	
DQS-DQ skew, DQS to last DQ valid, per group, per acce	SS	toqsq	_	0.4	_	0.45	_	0.45	-	0.6	ns	13, 17
WRITE command to first DQS latching transition		togss	0.75	1.25	0.75	1.25	0.75	1.25	0.75	1.25	tcĸ	
DQS falling edge from CK rising – hold time		t _{DSH}	0.2	-	0.2	-	0.2	-	0.2	-	tcĸ	
DQS falling edge to CK rising – setup time		t _{DSS}	0.2	-	0.2	-	0.2	-	0.2	-	tcĸ	
Data valid output window (DVW)		n/a	tqн -	togsq	tqн -	toasa	tqн -	toasa	tqн -	toqsq	ns	17
Half-clock period		thp	tch, tcl	-	tch, tcl	_	tch, tcl	_	tch, tcl	_	ns	18
Data out High 7 window from CV/ CV#	CL = 3	4	_	5.0	-	5.0	_	5.5	_	6.0	ns	19, 20
Data-out High-Z window from CK/ CK#	CL = 2	tHZ	_	6.5	_	6.5	_	6.5	-	6.5	ns	19, 20
Data-out Low-Z window from CK/CK#		tLZ	1.0	_	1.0	-	1.0	-	1.0	-	ns	19
Address and control input hold time (fast slew rate)		t _{IHF}	0.9	_	1.0	-	1.1	-	1.3	-	ns	15, 21
Address and control input hold time (slow slew rate)		t _{IHs}	1.1	_	1.2	_	1.2	-	1.5	_	ns	
Address and control input setup time (fast slew rate)		tisf	0.9	-	1.0	_	1.1	-	1.3	-	ns	15, 21
Address and control input setup time (slow slew rate)		tıss	1.1	-	1.2	-	1.2	-	1.5	-	ns	
Address and control input pulse width		tipw	2.3	_	2.5	-	2.6	-	tis + tiH	-	ns	16
LOAD MODE REGISTER command cycle time		t _{MRD}	2	_	2	_	2	-	2	_	tск	
DQ-DQS hold, DQS to first DQ to go nonvalid, per access	3	t _{QH}	t _{HP} - t _{QHS}	-	t _{HP} - t _{QHS}	_	t _{HP} - t _{QHS}	_	t _{HP} - t _{QHS}	-	ns	13, 17
Data hold skew factor		tqнs	-	0.5	-	0.5	-	0.65	-	0.75	ns	
ACTIVE-to-PRECHARGE command		tras	40	70,000	42	70,000	42	70,000	45	70,000	ns	22
ACTIVE to ACTIVE/ACTIVE to AUTO REFRESH comman	d period	trc	55	-	58.2	-	60	-	67.5	_	ns	
Active to read or write delay		trco	15	-	16.2	-	18	_	22.5	_	ns	
Refresh period		tref	-	64	-	64	-	64	_	64	ms	28

^{*} Optional speed grades – contact factory for availability.

Notes on next page

ELECTRICAL SPECIFICATIONS – AC OPERATING CONDITIONS (cont'd)

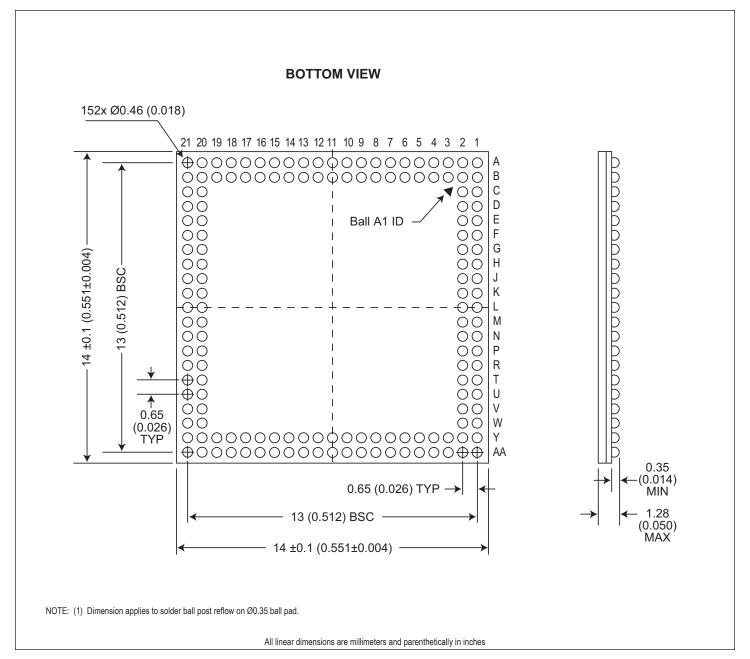
TABLE 9 - ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (cont'd)

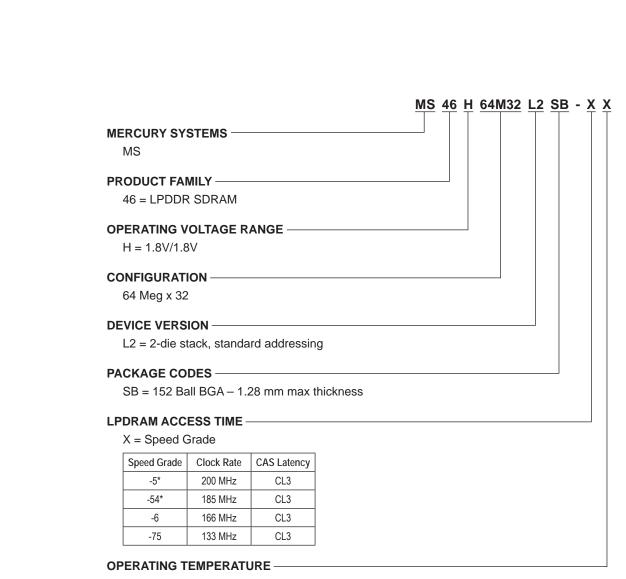

Notes 1–9 apply to all the parameters in this table; $V_{DD}/V_{DDQ} = 1.70-1.95V$

		٠,	·*	-5	4*	-(5	-7	5		
	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
	trefi	-	7.8	_	7.8	-	7.8	-	7.8	μs	23
	trfc	110	_	110	_	110	_	110	-	ns	
	t _{RP}	15	_	16.2	_	18	-	22.5	_	ns	
CL = 3	trpre	0.9	1.1	0.9	1.1	0.9	1.1	0.9	1.1	tcĸ	
CL = 2	trpre	0.5	1.1	0.5	1.1	0.5	1.1	0.5	1.1	tск	
	trpst	0.4	0.6	0.4	0.6	0.4	0.6	0.4	0.6	tcĸ	
	t _{RRD}	10	-	10.8	-	12	-	15	-	ns	
	tsrc	CL + 1	_	CL + 1	-	CL + 1	-	CL + 1	-	tcĸ	
	t _{SRR}	2	-	2	-	2	-	2	_	tcĸ	
	twpre	0.25	_	0.25	-	0.25	-	0.25	-	tcĸ	
	twpres	0	-	0	-	0	-	0	-	ns	24, 25
	twpst	0.4	0.6	0.4	0.6	0.4	0.6	0.4	0.6	tcĸ	26
	t _{WR}	15	-	15	-	15	-	15	-	ns	27
	twr	2	_	2	_	1	-	1	-	tcĸ	
	txp	2	_	2	_	1	-	1	_	tcĸ	
	txsr	112.5	_	112.5	-	112.5	-	112.5	-	ns	28
	<u> </u>	trefi trfc trfc trp CL = 3 trpre CL = 2 trpre trrpst trrp	trefi	trefi - 7.8 trefi - 7.8 trefi - 7.8 trefi - 110 7.8 trep 15 - 7.8 CL = 3 trepre 0.9 1.1 CL = 2 trepre 0.5 1.1 trepst 0.4 0.6 trepst 0.4 0.6 trepst 0.4 - 7.8 trepst 0.4 0.6 trepst 0.4 0.6 trepst 0.4 0.6 trepst 0.4 0.6 trepst 0.25 - 7. trepst 0.4 0.6 trepst 0.4 0.6	trefi - 7.8 - trfc 110 - 110 trp 15 - 16.2 CL = 3 trpre 0.9 1.1 0.9 CL = 2 trpre 0.5 1.1 0.5 trpst 0.4 0.6 0.4 trpst 10 - 10.8 tsrc CL + 1 - CL + 1 tsrr 2 - 2 twpre 0.25 - 0.25 twpres 0 - 0 twpst 0.4 0.6 0.4 twr 15 - 15 twr 2 - 2 twr 2 - 2 txp 2 - 2	trefi - 7.8 - 7.8 trefc 110 - 110 - trefc 110 - 110 - trefc 15 - 16.2 - CL = 3 trefe 0.9 1.1 0.9 1.1 CL = 2 trefe 0.5 1.1 0.5 1.1 treps 0.4 0.6 0.4 0.6 treps 0.4 0.6 0.4 0.6 twere 0.25 - 0.25 - twere 0.25 - 0.25 - twere 0.4 0.6 0.4 0.6 twere 0.4 0.6 0.4 0.6 twere 0.2 - 0 - twere 0.4 0.6 0.4 0.6 twere 0.2 - 0 - twere 0.2 - 0 - <	trefi - 7.8 - 7.8 - trefc 110 - 110 - 110 trefc 110 - 110 - 110 trefc 15 - 16.2 - 18 CL = 3 trefre 0.9 1.1 0.9 1.1 0.9 CL = 2 trefre 0.5 1.1 0.5 1.1 0.5 trepst 0.4 0.6 0.4 0.6 0.4 tsrec CL + 1 - CL + 1 - CL + 1 tsrec CL + 1 - CL + 1 - CL + 1 tsrec CL + 1 - CL + 1 - CL + 1 tsrec CL + 1 - CL + 1 - CL + 1 twrec 0.25 - 0.25 - 0.25 twrec 0 - 0 - 0 0 twrec 0 -	trefi - 7.8 - 7.8 - 7.8 trefc 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 111 0.9 1.1 0.6 0.4	trefi - 7.8 - 7.8 - 7.8 - 7.8 - 7.8 - 7.8 - 7.8 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 0.9 1.1 0.9 <	trefi - 7.8 - 7.8 - 7.8 trefc 110 - 110 - 110 - 110 - treft 15 - 16.2 - 18 - 22.5 - CL = 3 treft 0.9 1.1 0.9 1.1 0.9 1.1 0.9 1.1 CL = 2 treft 0.5 1.1 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4	trefi - 7.8 - 7.8 - 7.8 - 7.8 μs trefc 110 - 110 - 110 - 110 - ns treft 15 - 16.2 - 18 - 22.5 - ns CL = 3 treft 0.9 1.1 0.9 1.1 0.9 1.1 0.9 1.1 tck CL = 2 treft 0.5 1.1 0.5 1.1 0.5 1.1 0.5 1.1 tck treft 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 tck treft 10 - 10.8 - 12 - 15 - ns tsrc CL + 1 - tck twre 0.25 - 0.25

^{*} Optional speed grades - contact factory for availability.

NOTES:


- 1. All voltages referenced to Vss.
- 2. All parameters assume proper device initialization.
- Tests for AC timing and electrical AC and DC characteristics may be conducted at nominal supply voltage levels, but the related specifications and device operation are guaranteed for the full voltage ranges specified.
- 4. The circuit shown below represents the timing reference load used in defining the relevant timing parameters of the device. It is not intended to be either a precise representation of the typical system environment or a depiction of the actual load presented by a production tester. System designers will use IBIS or other simulation tools to correlate the timing reference load to system environment. Specifications are correlated to production test conditions (generally a coaxial transmission line terminated at the tester electronics). For the half-strength driver with a nominal 10pF load, parameters t_{AC} and t_{QH} are expected to be in the same range. However, these parameters are not subject to production test but are estimated by design/characterization. Use of lass or other simulation tools for system design validation is suggested.


- The CK/CK# input reference voltage level (for timing referenced to CK/CK#) is the point at which CK and CK# cross; the input reference voltage level for signals other than CK/ CK# is VDDQ/Z.
- A CK and CK# input slew rate ≥1 V/ns (2 V/ns if measured differentially) is assumed for all parameters.
- 7. All AC timings assume an input slew rate of 1 V/ns.
- 8. CAS latency definition: with CL = 2, the first data element is valid at (tck + tac) after the clock at which the READ command was registered; for CL = 3, the first data element is valid at (2 × tck + tac) after the first clock at which the READ command was registered.
- Timing tests may use a V_{IL}-to-V_{IH} swing of up to 1.5V in the test environment, but input timing is still
 referenced to V_{DDQ/2} or to the crossing point for CK/CK#. The output timing reference voltage level
 is V_{DDQ/2}.
- 10. Clock frequency change is only permitted during clock stop, power-down, or self refresh mode.
- In cases where the device is in self refresh mode for t_{CKE}, t_{CKE} starts at the rising edge of the clock and ends when CKE transitions HIGH.
- 12. tDAL = (twR/tck) + (trP/tck): for each term, if not already an integer, round up to the next highest integer.
- Referenced to each output group: For x32, DQS0 with DQ[7:0]; DQS1 with DQ[15:8]; DQS2 with DQ[23:16]: and DQS3 with DQ[31:24].
- 14. DQ and DM input slew rates must not deviate from DQS by more than 10%. If the DQ/DM/ DQS

- slew rate is less than 1.0 V/ns, timing must be derated: 50ps must be added to t_{DS} and t_{DH} for each 100 mV/ns reduction in slew rate. If the slew rate exceeds 4 V/ns, functionality is uncertain.
- 15. The transition time for input signals (CAS#, CKE, CS#, DM, DQ, DQS, RAS#, WE#, and addresses) are measured between V_{IL(DC)} to V_{IH(AC)} for rising input signals and V_{IH(DC)} to V_{IL(AC)} for falling input signals.
- 16. These parameters guarantee device timing but are not tested on each device.
- 17. The valid data window is derived by achieving other specifications: the (tcxz), tboso, and toh (the tohs). The data valid window derates directly proportional with the clock duty cycle and a practical data valid window can be derived. The clock is provided a maximum duty cycle variation of 45/55. Functionality is uncertain when operating beyond a 45/55 ratio.
- t_{HP (MIN)} is the lesser of t_{CL (MIN)} and t_{CH (MIN)} actually applied to the device CK and CK# inputs, collectively.
- 19. t_{HZ} and t_{LZ} transitions occur in the same access time windows as valid data transitions. These parameters are not referenced to a specific voltage level, but specify when the device output is no longer driving (t_{HZ}) or begins driving (t_{LZ}).
- 20. thz (MAX) will prevail over togsck (MAX) + trpst (MAX) condition.
- 21. Fast command/address input slew rate ≥1 V/ns. Slow command/address input slew rate ≥0.5 V/ns. If the slew rate is less than 0.5 V/ns, timing must be derated: t_{IS} has an additional 50ps per each 100 mV/ns reduction in slew rate from the 0.5 V/ns. t_{IH} has 0ps added, therefore, it remains constant. If the slew rate exceeds 4.5 V/ns, functionality is uncertain.
- READs and WRITEs with auto precharge must not be issued until tras (MIN) can be satisfied prior to the internal PRECHARGE command being issued.
- 23. The refresh period equals 64ms. This equates to an average refresh rate of 7.8125µs
- 24. This is not a device limit. The device will operate with a negative value, but system performance could be degraded due to bus turnaround.
- 25. It is recommended that DQS be valid (HIGH or LOW) on or before the WRITE command. The case shown (DQS going from High-Z to logic low) applies when no WRITEs were previously in progress on the bus. If a previous WRITE was in progress, DQS could be HIGH during this time, depending on tross
- 26. The maximum limit for this parameter is not a device limit. The device will operate with a greater value for this parameter, but system performance (bus turnaround) will degrade accordingly.
- 27. At least 1 clock cycle is required during t_{WR} time when in auto precharge mode.
- 28. Clock must be toggled a minimum of two times during the txsR period.

FIGURE 3 - 152-BALL BGA PACKAGE

ORDERING INFORMATION

I = Industrial Temperature (-40°C to +85°C)

C = Commercial Temperature (0°C to +70°C)

^{*} Optional speed grades - contact factory for availability.

Document Title

2Gb LPDDR (2 x 32Mx32)

Revision History

Rev#	History	Release Date	Status
Rev 0	Changes (Pg. 1-12)	March 2012	Preliminary
	0.1 Create new data sheet		
Rev 1	Changes (Pg. All) (ECN 10156)	August 2016	Preliminary
	1.1 Change document layout from Microsemi to Mercury Systems		

