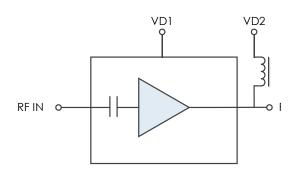
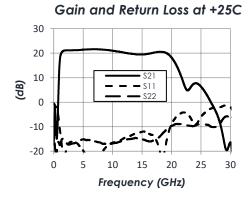
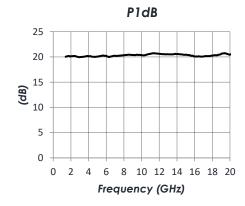


AM1136 – Amplifier 1.4 GHz to 20 GHz Driver Amplifier

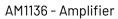


The AM1136 is a wideband, cascadable amplifier servicing the 1.4 to 20 GHz frequency range. The device exhibits high gain and high linearity across its bandwidth which makes it an excellent choice for a driver amplifier in an L0 or transmit path. It is packaged in a 3 mm QFN with internal 50 Ω matching to achieve a compact total PCB footprint for low SWaP applications.


FEATURES


- 21 dB Gain
- +20 dBm P1dB
- +29 dBm 0IP3
- 3.5 dB Noise Figure
- +3.3 & +4.1 V Operation
- 3mm QFN Package
- -40C to +85C Operation

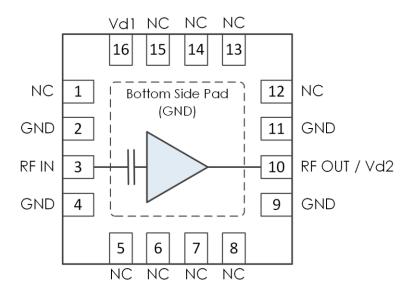
FUNCTIONAL DIAGRAM



CHARACTERISTIC PERFORMANCE

TECHNICAL DATA SHEET

CONTENTS


FEATURES	
FUNCTIONAL DIAGRAM	<i>'</i>
CHARACTERISTIC PERFORMANCE	
REVISION HISTORY	2
SPECIFICATIONS	Z
TYPICAL PERFORMANCE	6
TYPICAL APPLICATION	8
EXACT VOLTAGES	8
TYPICAL APPLICATION	ç
STANDARD VOLTAGES	9
EVALUATION PC BOARD	10
RELATED PARTS	10
COMPONENT COMPLIANCE INFORMATION	1

REVISION HISTORY

Date	Revision	Notes
June 20, 2023	1	Initial Release
March 21, 2024	1.1	Corrected PSat and Pin vs Pout Plots.
April 22, 2024	1.2	Typical Application Pin Numbers Corrected
February 11, 2025	2.0	Changed to Mercury branding. No content changes.
June 23, 2025	2.1	Corrected Pinout Functions

PIN LAYOUT AND DEFINITIONS

Pin	Name	Function
1	NC	No Connect*
2	GND	Ground - Common
3	RF In	RF Input - 50 Ohms - AC Coupled
4	GND	Ground - Common
5-8	NC	No Connect*
9	GND	Ground - Common
10	RF Out / Vd2	RF Output and DC Power Input – 50 Ohms – DC Coupled. External Bias Tee Required
11	GND	Ground - Common
12-15	NC	No Connect*
16	Vd1	DC Power Input

^{*} NC pins may be grounded or left floating.

SPECIFICATIONS

Absolute Maximum Ratings

	Minimum	Maximum
Supply Voltage	-0.3 V	+6 V
RF Input Power		+20 dBm
Storage Temperature Range	-55C	+150 C

Note: Any device operation beyond the Absolute Maximum Ratings may result in permanent damage to the device. The values listed in this table are extremes and do not imply functional operation of the device at these or any other conditions beyond what is listed under Recommended Operating Conditions. Devices subjected to conditions outside of what is recommended for extended periods may affect device reliability.

Handling Information

	Minimum	Maximum
Moisture Sensitivity Level	MSL 3	

Mercury products are electrostatic sensitive. Follow safe handling practices to avoid damage.

Recommended Operating Conditions

	Minimum	Typical	Maximum
Supply Voltage (Vd1)		+3.3 V	
Supply Voltage (Vd2)		+4.1 V	+4.3 V
Operating Case Temperature	-40 C		+85 C

Thermal Information

Junction to Case Thermal Resistance (θ _{JC})	+156.4 C/W
Nominal Junction Temperature at +85C Ambient	+165 C
Channel Temperature to Maintain 1 Million Hour MTTF	+175 C

DC Electrical Characteristics

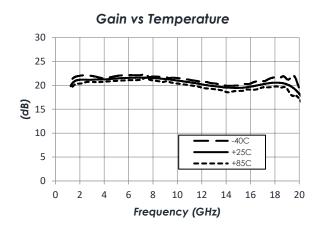
(T = 25 °C unless otherwise specified)

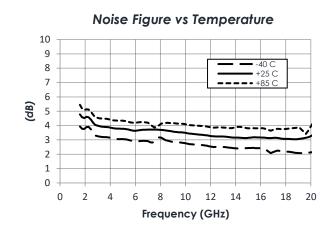
Param	Testing Conditions	Min	Typical	Max
DC Supply Voltage (Vd1)			+3.3 V	
DC Supply Voltage (Vd2)			4.1 V	4.3 V
DC Supply Current (Vd1)			53 mA	
DC Supply Current (Vd2)			63 mA	
Power Dissipated	Vd1 = 3.3 V, Vd2 = 4.1 V		0.43 W	

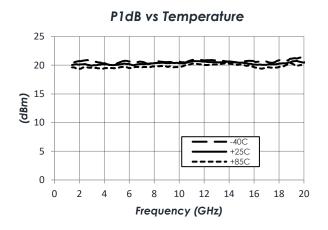
RF Performance

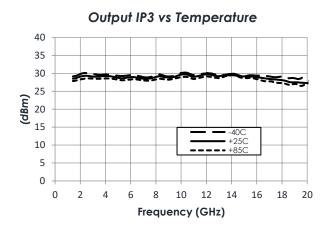
(T = 25 °C unless otherwise specified)

Param	Testing Conditions	Min	Typical	Max
Frequency Range		1.4 GHz		20 GHz
Gain ²	f = 1.4 GHz		20.4 dB	
	f = 10 GHz		21.0 dB	
	f = 20 GHz		18.2 dB	
Return Loss²	f = 1.4 GHz		-18 dB	
	f = 10 GHz		-17 dB	
	f = 20 GHz		-9 dB	
Output IP3 ^{1,2}			+29 dBm	
Output P1dB ²			+20 dBm	
Noise Figure ²			3.5 dB	

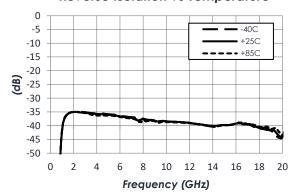

Notes:

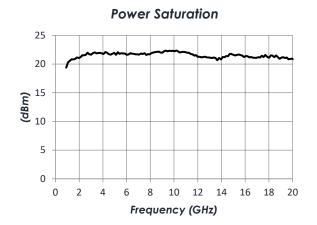

- OIP3 measured with 10 MHz tone spacing with Pout/tone = 0 dBm.
- Data measured directly at output of device. Output bias voltage supplied through bias tee as shown in Typical Application and is measured exclusive of board and connector effects.

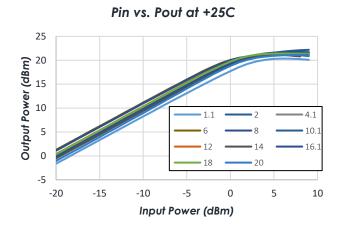



TYPICAL PERFORMANCE

(Vd1 = 3.3V, Vd2 = 4.1V, T = 25 °C unless otherwise specified)

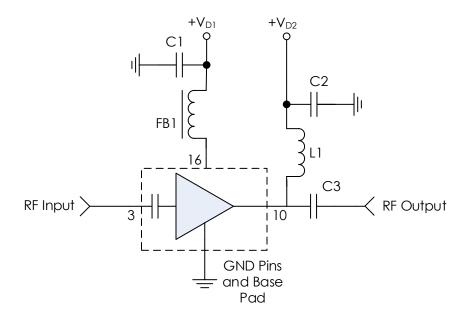



Reverse Isolation vs Temperature



TYPICAL PERFORMANCE (CONTINUED)

(Vd1 = 3.3V, Vd2 = 4.1V, T = 25 °C unless otherwise specified)



TYPICAL APPLICATION

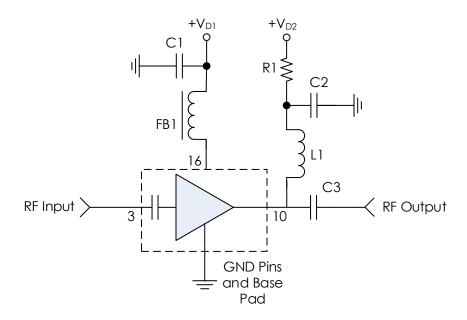
Exact Voltages

(+Vd1 = 3.3V, +Vd2 = 4.1V)

Recommended Component List (or Equivalent)

Part	Value	Part Number	Manufacturer
C1	0.1 µF	GRM155R71C104KA88	Murata
C2	0.1 µF	0201BB104KW160	Passive Plus
FB1	-	MMZ1005A222E	TDK
L1	250 nH	CC25T47K240G5-C	Piconics

Notes:

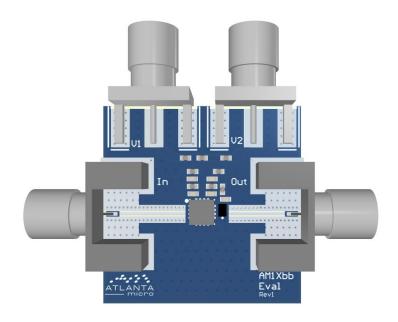

- 1. DC blocking capacitor should be a high performance, low-loss, broadband capacitor for optimum performance.
- 2. High frequency performance is limited only by the frequency response of the output bias tees present in the application circuit. Conical shown performs well within frequency range though other high performance low loss bias tees may be used.

TYPICAL APPLICATION

Standard Voltages

(+Vd1 = 3.3V, +Vd2 = 5.0V)

Recommended Component List (or Equivalent)


Part	Value	Part Number	Manufacturer
C1	0.1μF	GRM155R71C104KA88	Murata
C2	0.1μF	0201BB104KW160	Passive Plus
FB1	-	MMZ1005A222E	TDK
L1	250 nH	CC25T47K240G5-C	Piconics
R1	15 Ω	CRCW020115R0FNED	Vishay Dale

Notes:

- 1. DC blocking capacitor should be a high performance, low-loss, broadband capacitor for optimum performance.
- 2. High frequency performance is limited only by the frequency response of the output bias tees present in the application circuit. Conical shown performs well within frequency range though other high performance low loss bias tees may be used.
- 3. Dropping resistor may induce voltage drops as input power increases which can result in lower P1dB, Psat, and/or OIP3.
- 4. For better voltage stability and smaller performance impact consider a Zener diode circuit with R1.

EVALUATION PC BOARD

Notes:

1. Due to connectors and trace lengths the evaluation board performance may differ from that of the data shown in this datasheet. Where possible de-embedding is recommended.

RELATED PARTS

Part Number		Description
AM1095	6 GHz to 22.25 GHz	Driver Amplifier
AM1111	2 GHz to 18 GHz	Driver Amplifier
AM1137	20 MHz to 20 GHz	Driver Amplifier
AM1142	20 MHz to 18 GHz	Driver Amplifier

COMPONENT COMPLIANCE INFORMATION

RoHS: Mercury Systems, Inc. hereby certifies that all products comply with the EC Directive 2011/65/EC on the Restriction of Hazardous Substances, commonly known as EU-RoHS 6 and 10. All products supplied by Mercury shall be compliant with the European Directive 2011/65/EC based on the following substance list.

Substance List	Allowable Maximum Concentration
Lead (Pb)	<1000 PPM (0.1% by weight)
Mercury (Hg)	<1000 PPM (0.1% by weight)
Cadmium (Cd)	<75 PPM (0.0075% by weight)
Hexavalent Chromium (CrVI)	<1000 PPM (0.1% by weight)
Polybrominated Biphenyls (PBB)	<1000 PPM (0.1% by weight)
Polybrominated Diphenyl ethers (PBDE)	<1000 PPM (0.1% by weight)
Decabromodiphenyl Deca BDE	<1000 PPM (0.1% by weight)
Bis (2-ethylheyl) Phthalate (DEHP)	<1000 PPM (0.1% by weight)
Butyl Benzyl Phthalate (BBP)	<1000 PPM (0.1% by weight)
Dibutyl Phthalate (DBP)	<1000 PPM (0.1% by weight)
Diisobutyl Phthalate (DIBP)	<1000 PPM (0.1% by weight)

REACH: Mercury Systems, Inc. neither uses nor intentionally adds any of the substances considered to be a Substance of Very High Concern (SVHC) as defined by the EU Regulation (EC) No. 1907-2006 on Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH).

Conflict Materials: Mercury does not knowingly use materials that are sourced from the Democratic Republic of Congo (DRC) or any other known conflict regions. Mercury's supply chain is comprised of sources that are both environmentally and socially responsible. We periodically review this requirement with our vendors to ensure continued compliance.

Mercury takes its responsibility as a global partner seriously and will use due diligence within our supply chain to ensure all standards are met to the best of our knowledge.

mercury

Corporate Headquarters

50 Minuteman Road Andover, MA 01810 USA

- +1978.967.1401 tel
- +1866.627.6951 tel
- +1 978.256.3599 fax

International Headquarters Mercury International

Avenue Eugène-Lance, 38 PO Box 584 CH-1212 Grand-Lancy 1 Geneva, Switzerland

+41 22 884 5100 tel

Learn more

Visit: mrcy.com

For pricing details, contact: MMICsales@mrcy.com For technical details, contact: MMICsupport@mrcy.com

The Mercury Systems logo is a registered trademark of Mercury Systems, Inc. Other marks used herein may be trademarks or registered trademarks of their respective holders. Mercury products identified in this document conform with the specifications and standards described herein. Conformance to any such standards is based solely on Mercury's internal processes and methods. The information contained in this document is subject to change at any time without notice.

© 2025 Mercury Systems, Inc. 2-1-2025-07-16-DS-AM1136