The EnsembleSeries™ GSC6202 accelerator is a 6U OpenVPX carrier module that integrates two high-performance NVIDIA GPGPUs for applications that can benefit from massively parallel processing on streams of high-bandwidth data delivering some of the highest GFLOP processing performance as well as the highest GFLOP/Watt performance efficiency in the industry.

Meeting Today’s Processing Demands

Commercial and defense applications such as radar, electro-optical/infra-red (EO/IR), artificial intelligence (AI), electronic warfare (EW) and sensor fusion applications generate large amounts of raw sensor or network data that need to be processed in real-time to extract actionable intelligence. Each new generation of sensor arrays ushers in higher resolutions and frame rates. By offloading compute-intensive operations to GPGPUs such as fast Fourier transforms (FFTs), matrix multiplication, constant false alarm rate (CFAR), QR decomposition (QRD), synthetic aperture radar (SAR), video codecs (H.264, JPEG2000), pattern recognition or deep packet inspection, system architects can engineer solutions that can meet today’s processing demands — with room to scale for higher performance requirements in the future while preserving significant IP investment. The Pascal architecture solution also provides accelerated neural network and artificial intelligence performance for deep learning and cognitive and adaptive algorithms.

Mercury Systems is the better alternative for affordable, secure processing subsystems designed and made in the USA. These capabilities make us the first commercially based defense electronics company built to meet rapidly evolving next-generation defense challenges.
SOSA profiles

EnsembleSeries GSC6202 is optionally available in Sensor Open Systems Architecture (SOSA) compatible configurations.

EnsembleSeries GSC6202 Advancements

To keep up with the rapid evolution of GPGPU technology, the EnsembleSeries GSC6202 accelerators are carrier cards built using two industry-standard mobile PCIe modules (MXM) from NVIDIA. Because of the modular nature of the MXM, the EnsembleSeries GSC6202 carrier card only needs to be engineered once while maintaining the flexibility of updating GPUs. This approach saves significant engineering development time, allowing programs to deploy with the latest, highest performing embedded GPGPU technology as soon as they are available from NVIDIA. The option to configure the GSC6202 with either M6 or P5000 MXMs demonstrates the value of this approach.

The EnsembleSeries GSC6202 improves upon the previous generation modules by doubling the interconnect bandwidth via a PCIe Gen 3 switch. By adding the required throughput and MXM 3.1 support, this module can support the leading edge NVIDIA GPGPUs described above.

Open Software Environment

Mercury leverages over 35 years of multicomputer software expertise across its many platforms, including the latest multicore processors found in GPGPUs. This strategy is fully applied to the EnsembleSeries GSC6202 accelerators. Because the processor, memory and surrounding technologies are leveraged across product lines, software developed on the GSC6202 can interface seamlessly with other Mercury products.

EnsembleSeries GSC6202 accelerators interface with Intel modules running Red Hat® Linux®. Several software development environments are available for GSC6202 accelerators:

- NVIDIA CUDA: A parallel computing architecture that is accessible to software developers through industry standard programming languages.
- OpenCL: An open-source standard for cross-platform and parallel programming.

System Management

EnsembleSeries GSC6202 accelerators implements the advanced system management functionality architected in the VITA 46.11 specification to enable remote monitoring, event management, and hardware revision and health status. Using the standard I2C bus and intelligent platform management controller (IPMC) protocol, the on-board system management block implements the IPMC.

This allows the EnsembleSeries GSC6202 accelerators to:

- Read sensor values
- Read and write sensor thresholds, allowing an application to react to thermal, voltage or current variations that exceed those thresholds
- Reset the entire module
- Power up/down the entire module
- Retrieve module field replaceable unit (FRU) information
- Be managed remotely by a chassis management controller at the system level, such as implemented on EnsembleSeries 6U OpenVPX switches

VPX-REDI

The VPX (VITA 46) standard defines 6U boards with a modern, high-performance connector capable of supporting today’s high-speed fabric interfaces. VPX is most attractive when paired with the ruggedized enhanced design Implementation standard – REDI (VITA 48). EnsembleSeries GSC6202 accelerators are implemented as 6U VPX-REDI conduction-cooled (VITA 48.2), Air Flow-By™ (VITA 48.7), or Liquid Flow-Through (VITA 48.4) with an air-cooled variant available in the same VPX form-factor for less rugged environments.

Targeted primarily for harsh-environment embedded applications, VPX-REDI offers extended mechanical configurations supporting higher functional density, such as two-level maintenance (2LM). 2LM allows maintenance personnel to replace a failed module and restore the system to an operational state in a limited time period, minimizing potential damage to the module.

Technical Specifications

GPGPU

Two NVIDIA GPGPU MXMs designed specifically for embedded GPGPU applications

Option 1: Dual NVIDIA P5000 Pascal architecture MXM
- 4096 total processing cores (2048 per MXM)
- 12.8 peak theoretical single-precision TFLOPS (6.4 peak theoretical TFLOPS per MXM)
- x32 total PCIe 3.0 lanes (x16 PCIe 3.0 per MXM)
- 32 GB total GDDR5 Memory (16 GB per MXM)
- 256-bit memory interface
- 384 GB/s memory bandwidth (192 GB/s per MXM)
Option 2: Dual NVIDIA M6 Maxwell architecture MXM
3072 total processing cores (1536 cores per MXM)
5.8 peak theoretical single-precision TFLOPS (2.9 peak theoretical TFLOPS per MXM)
x32 total PCIe 3.0 lanes (x16 PCIe 3.0 per MXM)
16 GB total GDDR5 memory (8 GB per MXM)
256-bit memory interface
320 GB/s memory bandwidth (160 GB/s per MXM)
4 Display Port display outputs (2 outputs per MXM)
To front-panel (air-cooled only) and OpenVPX backplane
2 analog VGA display outputs (one per MXM)
To front-panel (air-cooled only) and OpenVPX backplane

64-Lane Configurable PCIe Switch
Configurable switch allows for multiple system-level configurations in terms of non-transparent bridging and enumeration
x16 PCIe 3.0 connections to each MXM site (32 lanes total)
x32 PCIe 3.0 total connections to backplane
x16 PCIe 3.0 OpenVPX P2 expansion plane
x16 PCIe 3.0 OpenVPX P5 expansion plane

IPMI (System Management)
On-board IPMI controller
Voltage and temperature monitor
Geographical address monitor
Power/reset control
On-board CPLD, FRU EEPROM interfaces

OpenVPX Multi-Plane Architecture
System management via IPMB-A and IPMB-B link on P0 management plane
Dual full x16 or dual x8 PCIe on P2 and P5 expansion plane
4 DisplayPort display outputs on P6 mezzanine I/O plane
2 analog VGA outputs on P3 mezzanine I/O plane

Compliance
SLT6-PER-1Q-10.3.5 (SOSA compatible)
SLT6-PER-4F-10.3.1 (SOSA compatible)

Mechanical
6U OpenVPX (air-cooled, Air Flow-By, conduction-cooled, or Liquid Flow Through)
1.0” pitch, single-slot
OpenVPX and VPX-REDI

Power Consumption
Typically 140W per accelerator

Figure 1. GSC6202 functional block diagram
Environmental

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating</td>
<td>0°C to +40°C</td>
<td>-25°C to +55°C</td>
<td>-45°C to +70°C</td>
<td>-40°C to +71°C</td>
<td>-40°C to +55°C</td>
<td>-40°C to +71°C</td>
</tr>
<tr>
<td>Storage</td>
<td>-40°C to -85°C</td>
<td>-55°C to +85°C</td>
<td>-55°C to +125°C</td>
<td>-55°C to +125°C</td>
<td>-55°C to +125°C</td>
<td></td>
</tr>
</tbody>
</table>

| Max Rate of Change | N/A | 5°C/min | 10°C/min | 10°C/min | 10°C/min | 10°C/min |

<table>
<thead>
<tr>
<th>Humidity</th>
<th>Operating*</th>
<th>10-90%, non-condensing</th>
<th>5-95%, non-condensing</th>
<th>5-95%, non-condensing</th>
<th>5-95%, non-condensing</th>
<th>5-95%, 100% condensing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage</td>
<td>10-90%, non-condensing</td>
<td>5-95%, non-condensing</td>
<td>5-95%, non-condensing</td>
<td>100% condensing</td>
<td>100% condensing</td>
<td>5-95%, non-condensing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Altitude</th>
<th>Operating*</th>
<th>0-10,000ft</th>
<th>0-30,000ft</th>
<th>0-70,000ft</th>
<th>0-70,000ft</th>
<th>0-70,000ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage</td>
<td>0-30,000ft</td>
<td>0-50,000ft</td>
<td>0-70,000ft</td>
<td>0-70,000ft</td>
<td>0-70,000ft</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vibration</th>
<th>Random</th>
<th>0.003 g2/Hz; 20-2000 Hz, 1 hr/axis</th>
<th>0.04 g2/Hz; 20-2000 Hz, 1 hr/axis</th>
<th>0.04 g2/Hz; 20-2000 Hz, 1 hr/axis</th>
<th>0.1 g2/Hz; 5-2000 Hz, 1 hr/axis</th>
<th>0.1 g2/Hz; 5-2000 Hz, 1 hr/axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sine</td>
<td>N/A</td>
<td>N/A</td>
<td>10G peak; 5-2000 Hz, 1 hr/axis</td>
<td>10G peak; 5-2000 Hz, 1 hr/axis</td>
<td>10G peak; 5-2000 Hz, 1 hr/axis</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Shock</th>
<th>z-axis: 20g; x and y-axes: 32g; (11ms, 1/2-sine pulse, 3 positive, 3 negative)</th>
<th>z-axis: 50g; x and y-axes: 80g; (11ms, 1/2-sine pulse, 3 positive, 3 negative)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Salt/Fog</th>
<th>N/A</th>
<th>Contact Factory</th>
<th>Contact Factory</th>
<th>10% NaCl</th>
</tr>
</thead>
</table>

** VITA - Standard Product Environmental Qualification Levels

- *Customer must maintain required cfm level. Consult factory for the required flow rates.
- **Card edge should be maintained below 71ºC
- ***Dependant upon flow rate and coolant

Storage Temperature is defined per MIL-STD-810F, Method 502.4, para 4.5.2, where the product under non-operational test is brought to an initial high temperature cycle to remove moisture. Then the unit under non-operational test will be brought to the low storage temperature. The low temperature test is maintained for 2 hours. The product is then brought to the high storage temperature and is maintained for 2 hours. The product is then brought back to ambient temperature. All temperature transitions are at a maximum rate of 10°C/min. One cold/hot cycle constitutes the complete non-operational storage temperature test. This assumes that the board level products are individually packaged in accordance with ASTM-D-3951 approved storage containers. These tests are not performed in Mercury shipping containers, but in an unrestrained condition. Please consult the factory if you would like additional test details.

All products manufactured by Mercury meet elements of the following specifications: MIL-STD-454, MIL-STD-883, MIL-HDBK-217F, and MIL-I-46058 or IPC-CC-830, and various IPC standards. Mercury’s inspection system has been certified in accordance with MIL-I-45208A.

Additional Services

<table>
<thead>
<tr>
<th>Optional Environmental Screening and Analysis Services</th>
<th>Standard Module, Optional Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Cold Start Testing</td>
<td>• Engineering Change Order (ECO) Notification</td>
</tr>
<tr>
<td>• Cold Soak Testing</td>
<td>• Alternate Mean Time Between Failure (MTBF) Calculations</td>
</tr>
<tr>
<td>• Custom Vibration</td>
<td>• Hazmat Analysis</td>
</tr>
<tr>
<td>• CFO Thermal Analysis</td>
<td>• Diminished Manufacturing Sources (DMS) Management</td>
</tr>
<tr>
<td>• Finite Element Analysis</td>
<td>• Longevity of Supply (LOS)</td>
</tr>
<tr>
<td>• Safety Margin Analysis</td>
<td>• Longevity of Repair (LOR)</td>
</tr>
<tr>
<td>• Temperature Cycling</td>
<td></td>
</tr>
<tr>
<td>• Power Cycling</td>
<td></td>
</tr>
<tr>
<td>• Environmental Stress Screening</td>
<td></td>
</tr>
</tbody>
</table>

Contact factory for additional information

The Mercury Systems logo and the following are trademarks or registered trademarks of Mercury Systems, Inc.: Mercury Systems, Innovation That Matters, Ensemble Series and Air Flow-By. Other marks used herein may be trademarks or registered trademarks of their respective holders. Mercury believes this information is accurate as of its publication date and is not responsible for any inadvertent errors. The information contained herein is subject to change without notice.

Copyright © 2019 Mercury Systems, Inc.

3283.03E-0819-ds-GSC6202